精英家教网 > 高中数学 > 题目详情
在直角梯形ABCD中,∠D=∠BAD=90°,AD=DC=
1
2
AB=1,将△ADC沿AC折起,使D到D′.若二面角D′-AC-B为60°,则三棱锥D′-ABC的体积为______.
设面ACD′为α,面ABC为β,取AC的中点E,连接D′E,再过D′作D′O⊥β,垂足为O,连接OE,则D′E⊥AC
∵AC⊥D′E,∴AC⊥OE
∴∠D′EO为二面角a-AC-β的平面角,∴∠D′EO=60°
在直角梯形ABCD中,由已知△DAC为等腰直角三角形,
∴AC=
2
,∠CAB=45°,∴D′E=
1
2
AC=
2
2

在直角△D′OE中,D′E=
2
2
,∴D′O=
6
4

∴VD-ABC=
1
3
S△ABC•D′O=
1
3
×
1
2
AC•BC•D′O=
1
6
×
2
×
2
×
6
4
=
6
12

故答案为:
6
12

练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在棱长为2的正方体ABCD-A1B1C1D1中,M,N分别是A1A,B1B的中点.
(1)求直线D1N与平面A1ABB1所成角的大小;
(2)求直线CM与D1N所成角的正弦值;
(3)(理科做)求点N到平面D1MB的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知边长为
m
的正方形ABCj沿对角线AC折成直二面角,使j到P的位置.
(四)求直线PA与BC所成的角;
(m)若M为线段BC上的动点,当BM:BC为何值时,平面PAC与平面PAM所成的锐二面角为45°.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在正三棱柱ABC-A1B1C1中,点D,D1分别为棱BC,B1C1的中点.
(1)求证:直线A1D1平面ADC1
(2)求证:平面ADC1⊥平面BCC1B1
(3)设底面边长为2,侧棱长为4,求二面角C1-AD-C的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

三棱锥S-ABC中,底面为边长为6的等边三角形,SA=SB=SC,三棱锥的高为
3
,则侧面与底面所成的二面角为(  )
A.45°B.30°C.60°D.65°

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在平面直角坐标系中,A(-2,3),B(3,-2),沿x轴把平面直角坐标系折成120°的二面角后,则线段AB的长度为(  )
A.
2
B.2
11
C.3
2
D.4
2

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,正方形ABCD所在平面与矩形ACEF所在平面垂直,其中AB=
2
,AF=1,M是EF中点.
(1)求证:AM平面BDE;
(2)求二面角A-BD-F的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知正方形ABCD沿其对角线AC将△ADC折起,设AD与平面ABC所成的角为β,当β取最大值时,二面角B-AC-D的大小为(  )
A.120°B.90°C.60°D.45°

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知斜三棱柱ABC-A1B1C1的底面是直角三角形,∠C=90°,侧棱与底面所成的角为α(0°<α<90°),点B1在底面上的射影D落在BC上.
(1)求证:AC⊥平面BB1C1C;
(2)当α为何值时,AB1⊥BC1,且使点D恰为BC中点?
(3)(理科做)当α=arccos
1
3
,且AC=BC=AA1时,求二面角C1-AB-C的大小.

查看答案和解析>>

同步练习册答案