精英家教网 > 高中数学 > 题目详情

【题目】如图,在三棱柱中,平面,且分别为棱的中点.

I)证明:直线共面;

)证明:平面平面;并试写出到平面的距离(不必写出计算过程).

【答案】I)证明见解析;()证明见解析.

【解析】

I)由中位线的性质可得,再由棱柱的性质可得,根据平行线的传递性可得,从而得到四点共面,即可得证;

)首先可得,再由线面垂直的性质得到,从而得到平面,再根据,即可得到平面,从而得证;设,则平面平面,过,可得即为到平面的距离,再在三角形中利用勾股定理及相似三角形的性质计算可得.

解:(I)证明:分别是的中点,

由棱柱性质易得

四点共面,即直线共面.

)同(I)易证四边形为平行四边形,又中点,则,又平面平面

平面平面

平面,又平面,又平面平面平面得证.

到平面的距离为

(解答)如图,设,则平面平面,过,可得即为到平面的距离.在中,,则,又,则在中,

,即到平面的距离为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)axbx(a>0b>0a≠1b≠1).设a2b.

(1)求方程f(x)2的根;

(2)若对于任意xR,不等式f(2x)≥mf(x)6恒成立,求实数m的最大值;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,已知底面上一点.

1)求证:平面平面

2)若的中点,且二面角的余弦值是,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】福彩是利国利民游戏,其刮刮乐之《蓝色奇迹》:如图(1)示例,刮开票面看到最左侧一列四个两位数字为“我的号码”,最上行四个两位数为“中奖号码”,这八个两位数是0099这一百个数字随机产生的,若两个数字相同即中得其相交线上的奖金,奖金可以累加.小明买的一张《蓝色奇迹》刮刮乐如图(2),除了一个“我的号码”外,他已经刮开票面上其它所有数字,依据目前的信息,小明从这张刮刮乐得到的奖金额高于600元的概率为(无所得税)( )

图(1) 图(2)

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了减轻家庭困难的高中学生的经济负担,让更多的孩子接受良好的教育,国家施行高中生国家助学金政策,普通高中国家助学金平均资助标准为每生每年1500元,具体标准由各地结合实际在1000元至3000元范围内确定,可以分为两或三档.各学校积极响应政府号召,通过各种形式宣传国家助学金政策.为了解某高中学校对国家助学金政策的宣传情况,拟采用随机抽样的方法抽取部分学生进行采访调查.

1)若该高中学校有2000名在校学生,编号分别为0001000200032000,请用系统抽样的方法,设计一个从这2000名学生中抽取50名学生的方案.(写出必要的步骤)

2)该校根据助学金政策将助学金分为3档,1档每年3000元,2档每年2000元,3档每年1000元,某班级共评定出31档,22档,13档,若从该班获得助学金的学生中选出2名写感想,求这2名同学不在同一档的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,在直角梯形ABCD中,ADBCABBCBDDC,点EBC边的中点,将△ABD沿BD折起,使平面ABD⊥平面BCD,连接AEACDE,得到如图2所示的几何体.

AD1,二面角CABD的平面角的正切值为,求二面角BADE的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正三棱柱ABC-A1B1C1中,AB=AA1=2,点PQ分别为A1B1BC的中点.

(1)求异面直线BPAC1所成角的余弦值;

(2)求直线CC1与平面AQC1所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平行四边形中,,平面平面,且.

1)在线段上是否存在一点,使平面,证明你的结论;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥PABCD中,PA⊥平面ABCD,∠ABC=∠BAD90°ADAP4ABBC2MPC的中点.

1)求异面直线APBM所成角的余弦值;

2)点N在线段AD上,且ANλ,若直线MN与平面PBC所成角的正弦值为,求λ的值.

查看答案和解析>>

同步练习册答案