精英家教网 > 高中数学 > 题目详情
如图,在△ABC中,∠ABC=60°,∠BAC=90°,AD是高,沿AD把△ABD折起,使∠BDC=90°.
精英家教网
(Ⅰ)证明:平面ADB⊥平面BDC;
(Ⅱ)设E为BC的中点,求
AE
DB
夹角的余弦值.
分析:(Ⅰ)翻折后,直线AD与直线DC、DB都垂直,可得直线与平面BDC垂直,再结合AD是平面ADB内的直线,可得平面ADB与平面垂直;
(Ⅱ)以D为原点,建立空间直角坐标系,分别求出D、B、C、A、E的坐标,从而得出向量
AE
DB
的坐标,最后根据空间向量夹角余弦公式,计算出
AE
DB
夹角的余弦值.
解答:精英家教网解:(Ⅰ)∵折起前AD是BC边上的高,
∴当△ABD折起后,AD⊥DC,AD⊥DB,
又DB∩DC=D,
∴AD⊥平面BDC,
∵AD?平面ADB
∴平面ADB⊥平面BDC
(Ⅱ)由∠BDC=90°及(Ⅰ)知DA,DB,DC两两垂直,
不防设|DB|=1,以D为坐标原点,
分别以
DB
DC
DA
所在直线x,y,z轴建立如图精英家教网所示的空间直角坐标系,
易得D(0,0,0),B(1,0,0),C(0,3,0),
A(0,0,
3
),E(
1
2
3
2
,0),
AE
=(
1
2
3
2
,-
3
)

DB
=(1,0,0),
AE
DB
夹角的余弦值为
cos<
AE
DB
>=
AE
DB
|
AE
|•|
DB
|
=
1
2
22
4
=
22
22
点评:图中DA、DB、DC三条线两两垂直,以D为坐标原点建立坐标系,将空间的几何关系的求解化为代数计算问题,使立体几何的计算变得简单.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在△ABC中,已知∠ABC=90°,AB上一点E,以BE为直径的⊙O恰与AC相切于点D,若AE=2cm,
AD=4cm.
(1)求:⊙O的直径BE的长;
(2)计算:△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在△ABC中,D是边AC上的点,且AB=AD,2AB=
3
BD,BC=2BD,则sinC的值为(  )
A、
3
3
B、
3
6
C、
6
3
D、
6
6

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在△ABC中,设
AB
=a
AC
=b
,AP的中点为Q,BQ的中点为R,CR的中点恰为P.
(Ⅰ)若
AP
=λa+μb
,求λ和μ的值;
(Ⅱ)以AB,AC为邻边,AP为对角线,作平行四边形ANPM,求平行四边形ANPM和三角形ABC的面积之比
S平行四边形ANPM
S△ABC

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在△ABC中,∠B=45°,D是BC边上的一点,AD=5,AC=7,DC=3.
(1)求∠ADC的大小;
(2)求AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在△ABC中,已知
BD
=2
DC
,则
AD
=(  )

查看答案和解析>>

同步练习册答案