已知函数有如下性质:如果常数,那么该函数在上是减函数,在 上是增函数.
(1)如果函数在上是减函数,在上是增函数,求的值;
(2)证明:函数(常数)在上是减函数;
(3)设常数,求函数的最小值和最大值.
科目:高中数学 来源: 题型:
(本题16分)已知函数有如下性质:如果常数,那么该函数在上是减函数,在上是增函数。
(1)如果函数在上是减函数,在上是增函数,求的值。
(2)设常数,求函数的最大值和最小值;
(3)当是正整数时,研究函数的单调性,并说明理由查看答案和解析>>
科目:高中数学 来源: 题型:
(本题16分)已知函数有如下性质:如果常数,那么该函数在上是减函数,在上是增函数。
(1)如果函数在上是减函数,在上是增函数,求的值。
(2)设常数,求函数的最大值和最小值;
(3)当是正整数时,研究函数的单调性,并说明理由查看答案和解析>>
科目:高中数学 来源: 题型:
已知函数有如下性质:如果常数,那么该函数在(0,)上减函数,在是增函数。
(1)如果函数的值域为,求的值;
(2)研究函数(常数)在定义域的单调性,并说明理由;
(3)对函数和(常数)作出推广,使它们都是你所推广的函数的特例。研究推广后的函数的单调性(只须写出结论,不必证明),并求函数
(n是正整数)在区间[,2]上的最大值和最小值(可利用你的研究结论)。
查看答案和解析>>
科目:高中数学 来源:庆安三中2010——2011学年度高二下学期期末考试数学(文) 题型:解答题
(12分)已知函数有如下性质:如果常数,那么该函数在上是减函数,在上是增函数。
(1)如果函数在上是减函数,在上是增函数,求的值。
(2)设常数,求函数的最大值和最小值;
查看答案和解析>>
科目:高中数学 来源:2010年浙江省高一上学期期中考试数学试卷 题型:解答题
(本题12分)已知函数有如下性质:如果常数,那么该函数在上是减函数,在上是增函数;
(1)如果函数在上是减函数,在上是增函数,求的值;
(2)当时,试用函数单调性的定义证明函数f(x)在上是减函数。
(3)设常数,求函数的最大值和最小值;
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com