精英家教网 > 高中数学 > 题目详情
15.已知四棱锥P-ABCD中底面四边形ABCD是正方形,各侧面都是边长为2的正三角形,M是棱PC的中点.建立空间直角坐标系,利用空间向量方法解答以下问题:
(1)求证:PA∥平面BMD;
(2)求二面角M-BD-C的平面角的大小.

分析 (1)连结AC、BD交于点O,连结OP,以O为原点,$\overrightarrow{OA},\overrightarrow{OB},\overrightarrow{OP}$分别为x,y,z轴的正方向,建立空间直角坐标系O-xyz,利用向量法能证明PA∥平面BMD.
(2)求出平面ABCD的法向量和平面MBD的法向量,利用向量法能求出二面角M-BD-C的平面角.

解答 证明:(1)连结AC、BD交于点O,连结OP.…(1分)
∵四边形ABCD是正方形,∴AC⊥BD∵PA=PC,∴OP⊥AC,
同理OP⊥BD,…(2分)
以O为原点,$\overrightarrow{OA},\overrightarrow{OB},\overrightarrow{OP}$分别为x,y,z轴的正方向,建立空间直角坐标系O-xyz,

$P(0,0,\sqrt{2}),A(\sqrt{2},0,0),B(0,\sqrt{2},0),M(-\frac{{\sqrt{2}}}{2},0,\frac{{\sqrt{2}}}{2})$,…(3分)
$\overrightarrow{PA}=(\sqrt{2},0,-\sqrt{2}),\overrightarrow{OB}=(0,\sqrt{2},0),\overrightarrow{OM}=(-\frac{{\sqrt{2}}}{2},0,\frac{{\sqrt{2}}}{2})$,…(4分)
平面BMD的法向量为$\overrightarrow n=(1,0,1)$,
∵$\overrightarrow{PA}•\overrightarrow n=0$,$\overrightarrow{PA}⊥\overrightarrow n$,又PA?平面BMD,…(5分)
∴PA∥平面BMD.…(6分)
解:(2)平面ABCD的法向量为$\overrightarrow a=(0,0,1)$…(7分)
平面MBD的法向量为$\overrightarrow b=(x,y,1)$,
则$\left\{\begin{array}{l}\sqrt{2}y=0\\-\frac{{\sqrt{2}}}{2}x+\frac{{\sqrt{2}}}{2}=0\end{array}\right.$,即$\left\{\begin{array}{l}y=0\\ x=1\end{array}\right.$,…(8分)
∴$\overrightarrow b=(1,0,1)$…(9分)
二面角M-BD-C的平面角为α,
则$cosα=\frac{1}{{\sqrt{2}}}=\frac{{\sqrt{2}}}{2}$,α=45°,…(11分)
∴二面角M-BD-C的平面角45°.…(12分)

点评 本题考查线面平行的证明,考查二面角的求法,是中档题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.已知函数f(x)=loga(x-1)-2(a>0且a≠1),则函数恒过定点(2,-2).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知圆锥的底面积为3π,高为3,则该圆锥的外接球的表面积为16π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.我市随机抽取部分企业调查年上缴税收情况(单位:万元),将所得数据绘制成频率分布直方图(如图),年上缴税收范围是[0,100],样本数据分组为[0,20),[20,40),[40,60),[60,80),[80,100]
(Ⅰ)求直方图中x的值
(Ⅱ)如果年上缴税收不少于60万元的企业可申请政策优惠,若全市共有企业1300个,试估计全市有多少企业可以申请政策优惠.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某调查者从调查中获知某公司近年来科研费支出(xi) 用与公司所获得利润(yi)的统计资料如表:
科研费用支出(xi)与利润(yi)统计表   单位:万元
年份科研费用支出(xi利润(yi
2011
2012
2013
2014
2015
2016
5
11
4
5
3
2
31
40
30
34
25
20
合计30180
(1)由散点图可知,科研费用支出与利润线性相关,试根据以上数据求出y关于x的回归直线方程;
(2)当x=xi时,由回归直线方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$得到的函数值记为$\stackrel{∧}{{y}_{i}}$,我们将ε=|$\stackrel{∧}{{y}_{i}}$-yi|称为误差;
在表中6组数据中任取两组数据,求两组数据中至少有一组数据误差小于3的概率;
参考公式:用最小二乘法求线性回归方程的系数公式:
$\stackrel{∧}{b}$=$\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{(\overline x)}^2}}}}$=$\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-}\overline y)}}{{\sum_{i=1}^n{{{(x_i^{\;}-\overline x)}^2}}}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知O,A,B三地在同一水平面内,A地在O地正东方向2km处,B地在O地正北方向2km处,某测绘队员在A、B之间的直线公路上任选一点C作为测绘点,用测绘仪进行测绘,O地为一磁场,距离其不超过$\sqrt{3}km$的范围内对测绘仪等电子仪器形成干扰,使测量结果不准确,则该测绘队员能够得到准确数据的概率是(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$1-\frac{{\sqrt{3}}}{2}$D.$1-\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设函数f(x)=$\left\{\begin{array}{l}{lo{g}_{2}x,x>0}\\{\frac{1}{1-x},x<0}\end{array}\right.$,则f(f(-3))等于(  )
A.-2B.2C.-$\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.一个几何体的三视图如图所示,则该几何体的体积是(  )
A.$\frac{8}{3}$B.4$\sqrt{3}$C.$\frac{4\sqrt{3}}{3}$D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若命题:“$?{x_0}∈R,a{x^2}-ax-2>0$”为假命题,则a的取值范围是(  )
A.(-∞,-8]∪[0,+∞)B.(-8,0)C.(-∞,0]D.[-8,0]

查看答案和解析>>

同步练习册答案