精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆C)的左,右焦点为,且焦距为,点分别为椭圆C的上、下顶点,满足.

1)求椭圆C的方程;

2)已知点,椭圆C上的两个动点MN满足,求证:直线过定点.

【答案】1;(2)见解析

【解析】

1)设,结合已知的向量表达式,根据平面向量加法的几何意义可知四边形为菱形,结合已知条件进行求解即可;

2)根据直线是否存在斜率进行分类讨论.设直线的方程,与椭圆方程联立,结合一元二次方程根与系数的关系,结合两平面向量垂直的性质进行求解即可.

1)设

可知四边形为菱形且

,解得,故

椭圆C的方程为.

2)当直线斜率存在时,设.

联立消去y

,则

整理得

代入整理得

解得.

时,直线过点E,舍去;

时,直线过定点.

当直线斜率不存在时,不妨设

则由,则

,即

,解得(舍去)或,也过定点.

综上,直线过定点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知为抛物线上的两个不重合的动点,且满足.

1)证明:线段的垂直平分线经过定点;

2)若线段的垂直平分线与轴交于点,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知

1)若 ,且函数 在区间 上单调递增,求实数a的范围;

2)若函数有两个极值点 且存在 满足 ,令函数 ,试判断 零点的个数并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为奇函数,且的极小值为.

(Ⅰ)求的值;

(Ⅱ)若过点可作三条不同的直线与曲线相切,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,曲线C1的参数方程为为参数),以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,曲线C2ρ24ρcosθ+30

1)求曲线C1的一般方程和曲线C2的直角坐标方程;

2)若点P在曲线C1上,点Q曲线C2上,求|PQ|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,椭圆的左、右焦点分别为为椭圆短轴端点,若为直角三角形且周长为.

1)求椭圆的方程;

2)若直线与椭圆交于两点,直线,斜率的乘积为,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为自然对数的底数),.

(1)当时,求函数的极小值;

(2)当时,关于的方程有且只有一个实数解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为比较甲、乙两名高中学生的数学素养,对课程标准中规定的数学六大素养进行指标测验(指标值满分为100分,分值高者为优),根据测验情况绘制了如图所示的六大素养指标雷达图,则下面叙述不正确的是(

A.甲的数据分析素养优于乙B.乙的数据分析素养优于数学建模素养

C.甲的六大素养整体水平优于乙D.甲的六大素养中数学运算最强

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,在等腰中,分别为的中点,的中点,在线段上,且。将沿折起,使点的位置(如图2所示),且

(1)证明:平面

(2)求平面与平面所成锐二面角的余弦值

查看答案和解析>>

同步练习册答案