精英家教网 > 高中数学 > 题目详情

【题目】从某学校高三年级共名男生中随机抽取名测量身高,测量发现被测学生身高全部介于之间,将测量结果按如下方式分成八组,第一组;第二组第八组,如图是按上述分组方法得到的频率分布直方图的一部分,若第一组与第八组人数相同,第六组、第七组、第八组人数依次构成等差数列.

)估计这所学校高三年级全体男生身高以上(含)的人数.

)求第六组、第七组的频率并补充完整频率分布直方图(铅笔作图并用中性笔描黑).

)若从身高属于第六组和第八组的所有男生中随机抽取两名男生,记他们的身高分别为,求满足的事件概率.

【答案】(1)9人;(2)见解析;(3)

【解析】试题分析:(1)由频率分布直方图可得前五组频率,进而可得后三组频率和人数,又可得后三组的人数,可得平均身高;
(2)易得后三组的,可得频率分布直方图;
(3)由()知身高在内的人数为人,

身高为的人数为人,

设为.,列举可得总的基本事件共15种情况,事件“”所包含的基本事件个数有6+1=7,由概率公式可得.

试题解析:)由频率分布直方图知,

前五组频率为

后三组频率为,人数为人,

这所学校高三男生身高在以上(含)的人数为人.

)由频率分布直方图得第八组频率为,人数为人,

设第六组人数为,则第七组人数为,又,所以

即第六组人数为第七组人数为人,频率分别为

频率除以组距分别等于,见图.

)由()知身高在内的人数为人,

身高为的人数为人,

设为

时,有共六种情况.

时,有共一种情况.

分别在内时,

种情况.

所以基本事件的总数为种.

事件所包含的基本事件个数有种,故

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列说法:①残差可用来判断模型拟合的效果;

②设有一个回归方程,变量x增加一个单位时,y平均增加5个单位;

③线性回归方程必过

④在一个2×2列联表中,由计算得=13.079,则有99%的把握确认这两个变量间有关系(其中);

其中错误的个数是(

A. 0 B. 1 C. 2 D. 3.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校为了解高一实验班的数学成绩,采用抽样调查的方式,获取了位学生在第一学期末的数学成绩数据,样本统计结果如下表:

分组

频数

频率

合计

(1)求的值和实验班数学平均分的估计值;

(2)如果用分层抽样的方法从数学成绩小于分的学生中抽取名学生,再从这名学生中选人,求至少有一个学生的数学成绩是在的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求f(2),f(x);

(2)证明:函数f(x)在[1,17]上为增函数;

(3)试求函数f(x)在[1,17]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx=xR),gx=2a-1

1)求函数fx的单调区间与极值

2)若fx≥gx恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设离心率为 的椭圆E: + =1(a>b>0)的左、右焦点为F1 , F2 , 点P是E上一点,PF1⊥PF2 , △PF1F2内切圆的半径为 ﹣1.
(1)求E的方程;
(2)矩形ABCD的两顶点C、D在直线y=x+2,A、B在椭圆E上,若矩形ABCD的周长为 ,求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】用空间向量解决下列问题:如图,在斜三棱柱中, 的中点, ⊥平面

1)求证:

2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: 的离心率为 ,右焦点为F,点B(0,1)在椭圆C上.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点 的直线交椭圆C于M,N两点,交直线x=2于点P,设 ,求证:λ+μ为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱锥ABCD中,AB⊥平面BCDCD⊥BD .

1)求证:CD⊥平面ABD

2)若ABBDCD1MAD中点,求三棱锥AMBC的体积.

查看答案和解析>>

同步练习册答案