精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
a
•(
b
-
a
),其中
a
=(cosωx,0),
b
=(
3
sinωx,1),且ω为正实数.
(1)求f(x)的最大值;
(2)对任意m∈R,函数y=f(x),x∈[m,m+π]的图象与直线y=
1
2
有且仅有一个交点,求ω的值,并求满足f(x)=
3
-1
2
,x∈[
π
12
12
]的x的值.
分析:(1)由函数f(x)=
a
•(
b
-
a
),其中
a
=(cosωx,0),
b
=(
3
sinωx,1),求出函数的解析式,进而根据正弦型函数的图象和性质,可得函数的最大值;
(2)根据函数y=f(x),x∈[m,m+π]的图象与直线y=
1
2
有且仅有一个交点,可得函数的周期为π,进而构造三角方程,求出x的值.
解答:解:(1)∵
a
=(cosωx,0),
b
=(
3
sinωx,1),
∴f(x)=
a
•(
b
-
a
)=(cosωx,0)•(
3
sinωx-cosωx,1)=
3
sinωx•cosωx-cosωx•cosωx
=
3
2
sin(2ωx)-
1
2
cos(2ωx)-
1
2
=sin(2ωx-
π
6
)-
1
2

∵A=1,B=-
1
2

∴f(x)max=
1
2

(2)∵T=π,ω为正实数.
∴ω=1
∴f(x)=sin(2x-
π
6
)-
1
2
=
3
-1
2

∴sin(2x-
π
6
)=
3
2

∵x∈[
π
12
12
]
∴2x-
π
6
∈[0,π]
∴2x-
π
6
=
π
3
,或2x-
π
6
=
3

∴x=
π
4
,或x=
12
点评:本题考查的知识点是平面向量的数量积,正弦型函数的图象和性质,其中根据平面向量的数量积,求出函数的解析式是解答的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)当a∈[-2,
1
4
)
时,求f(x)的最大值;
(2)设g(x)=[f(x)-lnx]•x2,k是g(x)图象上不同两点的连线的斜率,否存在实数a,使得k≤1恒成立?若存在,求a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•海淀区二模)已知函数f(x)=a-2x的图象过原点,则不等式f(x)>
34
的解集为
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a|x|的图象经过点(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0
(1)若a•b>0,判断函数f(x)的单调性;
(2)若a=-3b,求f(x+1)>f(x)时的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-2|x|+1(a≠0),定义函数F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 给出下列命题:①F(x)=|f(x)|; ②函数F(x)是奇函数;③当a<0时,若mn<0,m+n>0,总有F(m)+F(n)<0成立,其中所有正确命题的序号是
 

查看答案和解析>>

同步练习册答案