精英家教网 > 高中数学 > 题目详情

【题目】如图,已知抛物线,四边形都为正方形,原点的中点,点在抛物线.

1)求点和点的坐标;

2)过点的直线与抛物线相交于两点,若,求直线的方程.

【答案】(1),点的坐标为(2)直线的方程为

【解析】

1)分别假设正方形边长为,利用表示出坐标,代入抛物线方程可构造方程求得,进而得到所求坐标;

2)设,将直线方程与抛物线方程联立,得到韦达定理的形式;根据数量积的坐标运算,代入韦达定理的结论可构造方程求得,从而得到所求直线方程.

1)设正方形的边长为,则

代入得:,解得:(舍) 的坐标为

设正方形的边长为,则

代入方程得:,解得(舍)

的坐标为

2)由(1)知

设直线的方程为,点的坐标分别为

联立方程,消去整理为:

得:,解得:

故直线的方程为

即直线的方程为:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知F为抛物线y2x的焦点,点AB在该抛物线上且位于x轴的两侧,(其中O为坐标原点),则△ABO与△AFO面积之和的最小值是________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(1),求的单调区间;

(2)若当恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】20196月,国内的运营牌照开始发放.,我们国家的移动通信业务用了不到20年的时间,完成了技术上的飞跃,跻身世界先进水平.为了解高校学生对的消费意愿,20198月,从某地在校大学生中随机抽取了1000人进行调查,样本中各类用户分布情况如下:

用户分类

预计升级到的时段

人数

早期体验用户

20198月至201912

270

中期跟随用户

20201月至202112

530

后期用户

20221月及以后

200

我们将大学生升级时间的早晚与大学生愿意为套餐支付更多的费用作比较,可得出下图的关系(例如早期体验用户中愿意为套餐多支付5元的人数占所有早期体验用户的.

1)从该地高校大学生中随机抽取1人,估计该学生愿意在2021年或2021年之前升级到的概率;

2)从样本的早期体验用户和中期跟随用户中各随机抽取1人,以表示这2人中愿意为升级多支付10元或10元以上的人数,求的分布列和数学期望;

32019年底,从这1000人的样本中随机抽取3人,这三位学生都已签约套餐,能否认为样本中早期体验用户的人数有变化?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知是圆的直径,在圆上且分别在的两侧,其中.现将其沿折起使得二面角为直二面角,则下列说法不正确的是(

A.在同一个球面上

B.时,三棱锥的体积为

C.是异面直线且不垂直

D.存在一个位置,使得平面平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为为参数),直线的参数方程为为参数).

1)若,直线与曲线相交于两点,求

2)若,求曲线上的点到直线的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来,我国工业经济发展迅速,工业增加值连年攀升,某研究机构统计了近十年(从2008年到2017年)的工业增加值(万亿元),如下表:

年份

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

年份序号

1

2

3

4

5

6

7

8

9

10

工业增加值

13.2

13.8

16.5

19.5

20.9

22.2

23.4

23.7

24.8

28

依据表格数据,得到下面的散点图及一些统计量的值.

5.5

20.6

82.5

211.52

129.6

(1)根据散点图和表中数据,此研究机构对工业增加值(万亿元)与年份序号的回归方程类型进行了拟合实验,研究人员甲采用函数,其拟合指数;研究人员乙采用函数,其拟合指数;研究人员丙采用线性函数,请计算其拟合指数,并用数据说明哪位研究人员的函数类型拟合效果最好.(注:相关系数与拟合指数满足关系).

(2)根据(1)的判断结果及统计值,建立关于的回归方程(系数精确到0.01);

(3)预测到哪一年的工业增加值能突破30万亿元大关.

附:样本 的相关系数

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱的底面是边长为的正三角形,侧棱底面中点,分别为上的点,且满足.

(1)求证:平面平面, ;

(2)若三棱锥的体积为,求三棱柱的侧棱长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的导函数,且.

1)求的值,并证明处取得极值;

2)证明:在区间有唯一零点.

查看答案和解析>>

同步练习册答案