精英家教网 > 高中数学 > 题目详情

【题目】以下四个命题中正确的个数是( ) (1.)若x∈R,则x2+ ≥x;
(2.)若x≠kπ,k∈Z,则sinx+ ≥2;
(3.)设x,y>0,则 的最小值为8;
(4.)设x>1,则x+ 的最小值为3.
A.1
B.2
C.3
D.4

【答案】B
【解析】解:(1)若x∈R,则x2+ ﹣x= ≥0,当x= 时取等号,∴x2+ ≥x,正确;(2)若x≠kπ,k∈Z,取x= ,sinx+ =- ﹣2<0,因此不成立;(3)设x,y>0,则 =5+ =9,当且仅当x=2y>0时取等号,其最小值为9,因此不正确;(4)设x>1,则x﹣1>0,∴x+ =(x﹣1)+ +1= +1=3,当且仅当x=2时取等号,∴最小值为3,正确. 综上可得:只有(1)(4)正确.
故选:B.
【考点精析】解答此题的关键在于理解基本不等式的相关知识,掌握基本不等式:,(当且仅当时取到等号);变形公式:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】《九章算术》是我国古代著名数学经典.其中对勾股定理的论术比西方早一千多年,其中有这样一个问题:“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问径几何?”其意为:今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯该材料,锯口深1寸,锯道长1尺.问这块圆柱形木料的直径是多少?长为1丈的圆柱形木材部分镶嵌在墙体中,截面图如图所示(阴影部分为镶嵌在墙体内的部分).已知弦尺,弓形高寸,估算该木材镶嵌在墙中的体积约为( )

(注:1丈=10尺=100寸,

A. 633立方寸 B. 620立方寸 C. 610立方寸 D. 600立方寸

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ln(﹣3x)+1,则f(lg2)+f(lg)=(  )
A.-1
B.0
C.1
D.2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知指数函数y=g(x)满足:g(2)=4,定义域为R的函数f(x)=是奇函数.
(1)确定y=g(x)的解析式;
(2)求m,n的值;
(3)若对任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=ln(x2﹣x)的定义域为(  )
A.(0,1)
B.[0,1]
C.(﹣∞,0)∪(1,+∞)
D.(﹣∞,0]∪[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知m,n为两条不同的直线,α,β为两个不同的平面,则下列命题中正确的是(  )
A.mα,nα,m∥β,n∥βα∥β
B.α∥β,mα,nβ,m∥n
C.m⊥α,m⊥nn∥α
D.m∥n,n⊥αm⊥α

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在底面为平行四边形的四棱锥P﹣ABCD中,AB⊥AC,PA⊥平面ABCD,且PA=AB,点E是PD的中点.
(Ⅰ)求证:AC⊥PB;
(Ⅱ)求证:PB∥平面AEC.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,AD∥BC,BC=2AD,PB⊥AC,Q是线段PB的中点.
(Ⅰ)求证:AB⊥平面PAC;
(Ⅱ)求证:AQ∥平面PCD.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱锥P﹣ABCD中,底面ABCD是直角梯形,AD∥BC,AB⊥BC,AB=AD=1,BC=2,又PB⊥平面ABCD,且PB=1,点E在棱PD上,且BE⊥PD.
(1)求异面直线PA与CD所成的角的大小;
(2)求证:BE⊥平面PCD;
(3)求二面角A﹣PD﹣B的大小.

查看答案和解析>>

同步练习册答案