【题目】如图所示,在长方体ABCD﹣A1B1C1D1中,AB=AD=1,AA1=2,M是棱CC1的中点.
(1)证明:B1M⊥平面ABM;
(2)求异面直线A1M和C1D1所成角的余弦值.
【答案】
(1)证明:∵AB⊥面BCC1B1,BM面BCC1B1
∴AB⊥B1M①
∵B1M= ,BM= ,B1B=2
∴BM⊥B1M②
∵AB∩BM=B
∴由①②可知B1M⊥平面ABM.
(2)解:如图,因为C1D1∥B1A1,所以∠MA1B1为异面直线A1M和C1D1所成的角,
∵A1B1⊥面BCC1B1
∴∠A1B1M=90°
∵A1B1=1,B1M=
∴tan∠MA1B1=
即异面直线A1M和C1D1所成的角的正切值为 .
∴异面直线A1M和C1D1所成角的余弦值为 .
【解析】(1)可根据题中条件计算得出AB⊥BM,BM⊥B1M然后再根据面面垂直的判定定理即可得证.(2)由于C1D1∥B1A1故根据异面直线所成角的定义可知∠MA1B1为异面直线A1M和C1D1所成的角然后在解三角形MA1B1求出∠MA1B1的正切值即可得出结论.
【考点精析】通过灵活运用异面直线及其所成的角和直线与平面垂直的判定,掌握异面直线所成角的求法:1、平移法:在异面直线中的一条直线中选择一特殊点,作另一条的平行线;2、补形法:把空间图形补成熟悉的或完整的几何体,如正方体、平行六面体、长方体等,其目的在于容易发现两条异面直线间的关系;一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直;注意点:a)定理中的“两条相交直线”这一条件不可忽视;b)定理体现了“直线与平面垂直”与“直线与直线垂直”互相转化的数学思想即可以解答此题.
科目:高中数学 来源: 题型:
【题目】已知圆C1:(x+2)2+(y﹣1)2=4与圆C2:(x﹣3)2+(y﹣4)2=4,过点P(﹣1,5)作两条互相垂直的直线l1:y=k(x+1)+5,l2:y=﹣ (x+1)+5.
(1)若k=2时,设l1与圆C1交于A、B两点,求经过A、B两点面积最小的圆的方程.
(2)若l1与圆C1相交,求证:l2与圆C2相交,且l1被圆C1截得的弦长与l2被圆C2截得的弦长相等.
(3)是否存在点Q,过Q的无数多对斜率之积为1的直线l3 , l4 , l3被圆C1截得的弦长与l4被圆C2截得的弦长相等.若存在求Q的坐标,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的一个顶点为A(0,﹣1),焦点在x轴上.若右焦点到直线x﹣y+2 =0的距离为3.
(1)求椭圆的方程;
(2)设椭圆与直线y=kx+m(k≠0)相交于不同的两点M、N.当|AM|=|AN|时,求m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列结论正确的是( )
A.各个面都是三角形的几何体是三棱锥
B.一平面截一棱锥得到一个棱锥和一个棱台
C.棱锥的侧棱长与底面多边形的边长相等,则该棱锥可能是正六棱锥
D.圆锥的顶点与底面圆周上的任意一点的连线都是母线
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下列结论:
①在△ABC中,sinA>sinBa>b;
②常数数列既是等差数列又是等比数列;
③数列{an}的通项公式为 ,若{an}为递增数列,则k∈(﹣∞,2];
④△ABC的内角A,B,C满足sinA:sinB:sinC=3:5:7,则△ABC为锐角三角形.其中正确结论的个数为( )
A.0
B.1
C.2
D.3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某产品分为 三级,若生产中出现 级品的概率为0.03,出现 级品的概率为0.01,则对产品抽查一次抽得 级品的概率是( )
A.0.09
B.0.98
C.0.97
D.0.96
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{bn}是首项b1=1,b4=10的等差数列,设bn+2=3log an(n∈n*).
(1)求证:{an}是等比数列;
(2)记cn= ,求数列{cn}的前n项和Sn;
(3)记dn=(3n+1)Sn , 若对任意正整数n,不等式 + +…+ > 恒成立,求整数m的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com