精英家教网 > 高中数学 > 题目详情

【题目】已知双曲线 C1 =1( a>0,b>0),圆 C2:x2+y2﹣2ax+ a2=0,若双曲线C1 的一条渐近线与圆 C2 有两个不同的交点,则双曲线 C1 的离心率的范围是(
A.(1,
B.( ,+∞)
C.(1,2)
D.(2,+∞)

【答案】A
【解析】解:双曲线 C1 =1( a>0,b>0),渐近线方程y=± x,即bx±ay=0, 圆 C2:x2+y2﹣2ax+ a2=0,(x﹣a)2+y2= ,圆心(a,0),半径 a,
由双曲线C1 的一条渐近线与圆 C2 有两个不同的交点,
a,即c>2b,
则c2>4b2=4(c2﹣a2),即c2 a2
双曲线 C1 的离心率e=
由e>1,
∴双曲线 C1 的离心率的范围(1, ),
故选A.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知双曲线C1 一焦点与抛物线y2=8x的焦点F相同,若抛物线y2=8x的焦点到双曲线C1的渐近线的距离为1,P为双曲线左支上一动点,Q(1,3),则|PF|+|PQ|的最小值为(
A.4
B.4
C.4
D.2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|xex|,g(x)=f2(x)+λf(x),若方程g(x)=﹣1有且仅有4个不同的实数解,则实数λ的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=Acos(ωx+φ)(A>0,ω>0,﹣π<φ<0)的部分图象如图所示,为了得到g(x)=Asinωx的图象,只需将函数y=f(x)的图象(
A.向左平移 个单位长度
B.向左平移 个单位长度
C.向右平移 个单位长度
D.向右平移 个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足a1=1,an+1=1﹣ ,其中n∈N*
(Ⅰ)设bn= ,求证:数列{bn}是等差数列,并求出{an}的通项公式an
(Ⅱ)设Cn= ,数列{CnCn+2}的前n项和为Tn , 是否存在正整数m,使得Tn 对于n∈N*恒成立,若存在,求出m的最小值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某科技博览会展出的智能机器人有 A,B,C,D 四种型号,每种型号至少有 4 台.要求每 位购买者只能购买1台某种型号的机器人,且购买其中任意一种型号的机器人是等可能的.现在有 4 个人要购买机器人.
(Ⅰ)在会场展览台上,展出方已放好了 A,B,C,D 四种型号的机器人各一台,现把他们 排成一排表演节目,求 A 型与 B 型相邻且 C 型与 D 型不相邻的概率;
(Ⅱ)设这 4 个人购买的机器人的型号种数为ξ,求ξ 的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)= ,F(x)=2f(x)﹣x有2个零点,则实数a的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】三棱柱ABC﹣A1B1C1中,△ABC为等边三角形,AA1⊥平面ABC,AA1=AB,M,N分别是A1B1 , A1C1的中点,则BM与AN所成角的余弦值为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)满足f(x)=f( )且当x∈[ ,1]时,f(x)=lnx,若当x∈[ ]时,函数g(x)=f(x)﹣ax与x轴有交点,则实数a的取值范围是(
A.[﹣ ,0]
B.[﹣πlnπ,0]
C.[﹣ ]
D.[﹣ ,﹣ ]

查看答案和解析>>

同步练习册答案