精英家教网 > 高中数学 > 题目详情

【题目】
(1)求对称轴是 轴,焦点在直线 上的抛物线的标准方程;
(2)过抛物线 焦点 的直线 它交于 两点,求弦 的中点的轨迹方程.

【答案】
(1)解:对称轴是 轴则顶点在焦点在

所以 ,则
.
(2)解:由题知抛物线焦点为
当直线的斜率存在时,设为 ,则焦点弦方程为
代入抛物线方程得所以 ,由题意知斜率不等于0,
方程是一个一元二次方程,由韦达定理:
所以中点坐标:
代入直线方程
中点纵坐标;
即中点为
消参数 ,得其方程为
当直线的斜率不存在时,直线的中点是 ,符合题意,
故答案为: .
【解析】(1)先求出抛物线的焦点坐标,再求抛物线的方程;
(2)设出过焦点的直线的方程代入到抛物线方程中,消去y得关于x的一元二次方程,结合 韦达定理,表示出弦中点的坐标,消去参数k得中点轨迹方程.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某保险公司有一款保险产品的历史收益率(收益率=利润÷保费收入)的频率分布直方图如图所示:

(Ⅰ)试估计平均收益率;

(Ⅱ)根据经验,若每份保单的保费在20元的基础上每增加元,对应的销量(万份)与(元)有较强线性相关关系,从历史销售记录中抽样得到如下5组的对应数据:

据此计算出的回归方程为.

(i)求参数的估计值;

(ii)若把回归方程当作的线性关系,用(Ⅰ)中求出的平均收益率估计此产品的收益率,每份保单的保费定为多少元时此产品可获得最大收益,并求出该最大收益.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,内角A,B,C所对应的边分别为a,b,c,且 .
(1)求角B的大小;
(2)若b= ,求△ABC的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设△ABC的内角A,B,C所对的边分别为a,b,c,已知A为钝角,且2a ,若 ,则△ABC的面积的最大值为 .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数y=f(x),f(0)=-2,且对 ,y R,都有f(x+y)-f(y)=(x+2y+1)x.
(1)求f(x)的表达式;
(2)已知关于x的不等式f(x)-ax+a+1 的解集为A,若A[2,3],求实数a的取值范围;
(3)已知数列{ }中, ,记 ,且数列{ 的前n项和为
求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在△ABC中,角A,B,C所对的边分别是a,b,c,且a、b、c成等比数列,c= bsinC﹣ccosB.
(Ⅰ)求B的大小;
(Ⅱ)若b=2 ,求△ABC的周长和面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知以点为圆心的圆过点线段的垂直平分线交圆于点,

(1)求直线的方程; (2)求圆的方程。

(3)设点在圆上,试探究使的面积为 8 的点共有几个?证明你的结论

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: + =1(a>b>0)的离心率为 ,点B是椭圆C的上顶点,点Q在椭圆C上(异于B点).
(Ⅰ)若椭圆V过点(﹣ ),求椭圆C的方程;
(Ⅱ)若直线l:y=kx+b与椭圆C交于B、P两点,若以PQ为直径的圆过点B,证明:存在k∈R, =

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,是正方形的对角线,弧的圆心是,半径为,正方形为轴旋转,求图中Ⅰ,Ⅱ,Ⅲ三部分旋转所得旋转体的体积之比.

查看答案和解析>>

同步练习册答案