【题目】已知平面内两点A(8,-6),B(2,2).
(1)求过点P(2,-3)且与直线AB平行的直线l的方程;
(2)一束光线从B点射向(1)中直线l,若反射光线过点A,求反射光线所在的直线方程.
【答案】
(1)解:由点斜式 ∴直线l的方程4x+3y+1=0
(2)解:设B(2,2)关于直线l的对称点B'(m,n)∴
解得 ∴ ;
由点斜式可得 整理得11x+27y+74=0
【解析】(1)由题意借助两个点的坐标求出A、B两点所在直线的方程,再利用点斜式求出过点P(2,-3)且与直线AB平行的直线l的方程。(2)根据入射光线和反射光线的性质,利用点关于直线对称即可求出点B(2,2)关于直线l的对称点B'的坐标,所以就可以求出 kB'A的值再利用点斜式求出直线的方程。
【考点精析】认真审题,首先需要了解两条直线平行与倾斜角、斜率的关系(两条直线都有斜率而且不重合,如果它们平行,那么它们的斜率相等;反之,如果它们的斜率相等,那么它们平行),还要掌握点斜式方程(直线的点斜式方程:直线经过点,且斜率为则:)的相关知识才是答题的关键.
科目:高中数学 来源: 题型:
【题目】如图,在直三棱柱ABC﹣A1B1C1中,AC=3,BC=4,AB=5,AA1=4,点D是AB的中点.
(1)求证:AC⊥BC1;
(2)求证:AC1∥平面CDB1;
(3)求二面角B﹣DC﹣B1的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义在R上的函数f(x)= x3+cx+3(c为常数),f(x)在x=0处的切线与直线y=x+2垂直.
(1)求函数y=f(x)的解析式;
(2)设g(x)=4lnx﹣f′(x),(其中f′(x)是函数f(x)的导函数),求g(x)的极值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设锐角三角形ABC的内角A,B,C的对边分别为a,b,c,且a=2bsin A. (Ⅰ)求角B的大小;
(Ⅱ)若a= ,c=5,求△ABC的面积及b.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ex , g(x)=mx2+ax+b,其中m,a,b∈R,e=2.71828…为自然对数的底数. (I)函数h(x)=xf (x),当a=l,b=0时,若函数h(x)与g(x)具有相同的单调区间,求m的值;
(II)记F(x)=f(x)﹣g(x).当a=2,m=0时,若函数F(x)在[﹣1,2]上存在两个不同的零点,求b的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆C:x2+y2+2x﹣4y+1=0的圆心在直线ax﹣by+1=0上,则ab的取值范围是( )
A.(﹣∞, ]
B.(﹣∞, ]
C.(0, ]
D.(0, ]
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com