精英家教网 > 高中数学 > 题目详情
8.下列命题中,判断条件p是条件q的什么条件:
(1)p:|x|=|y|,q:x=y;
(2)p:△ABC是直角三角形,q:△ABC是等腰三角形;
(3)p:四边形的对角线互相平分,q:四边形是矩形;
(4)p:p且q是真命题,q:非p为假命题.

分析 根据充分必要条件的定义分别对(1)--(4)进行判断即可.

解答 解:(1)p:|x|=|y|?x=±y,q:x=y,
∴p是q的必要不充分条件;
(2)p:△ABC是直角三角形,q:△ABC是等腰三角形,
∴p是q的既不充分也不必要条件;
(3)p:四边形的对角线互相平分?平行四边形,q:四边形是矩形,
∴p是q的必要不充分条件
(4)p:p且q是真命题?p是真命题,q也是真命题,q:非p为假命题,
∴p是q的充分不必要条件.

点评 本题考查了充分必要条件,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.如图,在棱长为2的正方体ABCD-A1B1C1D1中,E、F分别为棱AD、C1D1的中点,
(Ⅰ) 分别作出四边形BED1F在平面ABCD、ABB1A1、BCC1B1内的投影,并求出投影的面积;
投影一的面积为4;
投影二的面积为4;
投影三的面积为4;
(Ⅱ) 直线BF与ED1相交吗?答案:不;求直线BE与D1F所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图1,在直角梯形ABCD中,AD∥BC,AD⊥AB,AB=BC=$\frac{1}{2}$AD,E是AD的中点,O是AC与BE的交点,将△ABE沿BE折起到△A1BE的位置,如图2,
(1)证明:平面A1DC⊥平面A1OC;
(2)若平面A1BE⊥平面BCDE,求直线CB与平面A1BE所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.如图,在正三棱柱ABC-A1B1C1中,侧棱长为2$\sqrt{2}$,底面三角形的边长为2,则BC1与侧面ACC1A1所成角的大小为30°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,在长方体中ABCD-A1B1C1D1,AB=3,BC=AA1=4,点O是AC的中点.
(1)求异面直线AD1和DC1所成角的余弦值.
(2)求点C到平面BC1D的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,G是△OAB的重心,P,Q分别是边OA,OB上的动点(P点可以和A点重合,Q点可以与B点重合),且P,G,Q三点共线.
(1)设$\overrightarrow{PG}=λ\overrightarrow{PQ}$,将$\overrightarrow{OG}$用$λ,\overrightarrow{OP},\overrightarrow{OQ}$表示;
(2)若△OAB为正三角形,且边长|AB|=a,设|PG|=x,|QG|=y,求$\frac{1}{x^2}+\frac{1}{y^2}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设函数f(x)=|x+2|+|x-2|,x∈R,不等式f(x)≤6的解集为M.
(1)求M;
(2)当a,b∈M时,证明:3|a+b|≤|ab+9|.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.函数f(x)=x2+1,若f(f(x0))=2,则x0=±1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知集合M={x|1<x<5,x∈N},S={1,2,3},那么M∪S=(  )
A.{1,2,3,4}B.{1,2,3,4,5}C.{2,3}D.{2,3,4}

查看答案和解析>>

同步练习册答案