已知函数f(x)=x2+ax-lnx,a∈R;
(1)若函数f(x)在[1,2]上是减函数,求实数a的取值范围;
(2)令g(x)=f(x)-x2,是否存在实数a,当x∈(0,e](e是自然对数的底数)时,函数g(x)的最小值是3,若存在,求出a的值;若不存在,说明理由.
(1) (2) 存在a=e2使得当x∈(0,e]时,g(x)有最小值3.
【解析】
试题分析:(1)在[1,2]上恒成立 (1分)
令h(x)=2x2+ax-1,x∈[1,2],∴h(x)≤0在[1,2]上恒成立 (2分)
得,. (5分)
(2)假设存在实数a,使g(x)=f(x)-x2,x∈(0,e]有最小值3
g(x)=ax-lnx,x∈(0,e],g′(x)=a-= (6分)
①当a≤0时,g′(x)<0,g(x)在(0,e]上单调递减
∴g(x)min=g(e)=ae-1=3,∴a= (舍去) (8分)
②当0<<e即a>时,在(0,)上,g′(x)<0;在(,e]上,g′(x)>0
∴g(x)在(0,]上单调递减,在(,e]上单调递增
∴g(x)min==1+lna=3,∴a=e2满足条件 (11分)
③当≥e即0<a≤时,g′(x)<0,g(x)在(0,e]上单调递减
g(x)min=g(e)=ae-1=3
∴a=> (舍去) (13分)
综上所述,存在a=e2使得当x∈(0,e]时,g(x)有最小值3. (14分)
考点:函数导数判定单调性求最值
点评:第一小题已知函数在某一区间上是减函数得到结论,学生解题时容易忽略等号写成,第二问要分情况讨论极值点与区间(0,e]的关系从而确定在区间(0,e]上的单调性求出函数最值
科目:高中数学 来源: 题型:
已知函数f(x)=x|m-x|(x∈R),且f(4)=0.
(1)求实数m的值;
(2)作出函数f(x)的图像;
(3)根据图像指出f(x)的单调递减区间;
(4)根据图像写出不等式f(x)>0的解集;
(5)求当x∈[1,5)时函数的值域.
查看答案和解析>>
科目:高中数学 来源:新课标高三数学对数与对数函数、反比例函数与幂函数专项训练(河北) 题型:解答题
已知函数f(x)=loga(x+1),g(x)=2loga(2x+t)(t∈R),其中x∈[0,15],a>0,且a≠1.
(1)若1是关于x的方程f(x)-g(x)=0的一个解,求t的值;
(2)当0<a<1时,不等式f(x)≥g(x)恒成立,求t的取值范围;
查看答案和解析>>
科目:高中数学 来源:2014届江西省高二下学期第二次月考文科数学试卷(解析版) 题型:解答题
已知函数f(x)=|x+1|,g(x)=2|x|+a.
(1)当a=0时,解不等式f(x)≥g(x);
(2)若任意x∈R,f(x)g(x)恒成立,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源:2013届新课标高三配套第四次月考文科数学试卷(解析版) 题型:解答题
已知函数f(x)=x3+x2-ax-a,x∈R,其中a>0.
(1)求函数f(x)的单调区间;
(2)若函数f(x)在区间(-2,0)内恰有两个零点,求a的取值范围;
(3)当a=1时,设函数f(x)在区间[t,t+3]上的最大值为M(t),最小值为m(t),记g(t)=M(t)-m(t),求函数g(t)在区间[-3,-1]上的最小值.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年湖南省、岳阳县一中高三11月联考理科数学 题型:解答题
(本小题满分13分)(第一问8分,第二问5分)
已知函数f(x)=2lnx,g(x)=ax2+3x.
(1)设直线x=1与曲线y=f(x)和y=g(x)分别相交于点P、Q,且曲线y=f(x)和y=g(x)在点P、Q处的切线平行,若方程f(x2+1)+g(x)=3x+k有四个不同的实根,求实数k的取值范围;
(2)设函数F(x)满足F(x)+x[f′(x)-g′(x)]=-3x2-(a+6)x+1.其中f′(x),g′(x)分别是函数f(x)与g(x)的导函数;试问是否存在实数a,使得当x∈(0,1]时,F(x)取得最大值,若存在,求出a的取值范围;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com