精英家教网 > 高中数学 > 题目详情
(12分)如图,在棱长为1的正方体中,
(I)在侧棱上是否存在一个点P,使得直线与平面所成角的正切值为
;(Ⅱ)若P是侧棱上一动点,在线段上是否存在一个定点,使得在平面上的射影垂直于.并证明你的结论.
(I)略   (Ⅱ)略
解法一:(Ⅰ)如图,设PC=m,连AC,  
设AC与BD相交于点O,AP与平面相交于点G,,
连结OG,因为PC∥平面,平面∩平面APC=OG,故OG∥PC,§
K所以,OG=PC=.又AO⊥BD,AO⊥BB1所以AO⊥平面,故∠AGO是AP与平面所成的角.
在Rt△AOG中,tanAGO=
即m=.所以,当PC=时,
直线AP与平面所成的角的正切值为. …………………6分
(Ⅱ)可以推测,点Q应当是A1C1的中点O1,因为D1O1⊥A1C1, 且 D1O1⊥A1A ,所以 D1O1⊥平面ACC1A1,又AP平面ACC1A1,故 D1O1⊥AP.那么根据三垂线定理知,D1O1在平面APD1的射影与AP垂直. …………………12分
解法二:(Ⅰ)建立如图所示的空间直角坐标系,
则A(1,0,0),B(1,1,0),P(0,1,m),C(0,1,0),D(0,0,0),
B1(1,1,1),D1(0,0,1)
所以
又由知,为平面的一个法向量.
设AP与平面所成的角为

依题意有解得
故当时,直线AP与平面所成的角的正切值为. ………6分
(Ⅱ)若在A1C1上存在这样的点Q,设此点的横坐标为, 
则Q(x,1-,1),
依题意,要使D1Q在平面APD1上的射影垂直于AP,
等价于D1Q⊥AP
即Q为A1C1的中点时,满足题设要求. …………………12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,正三棱柱ABCA1B1C1的各棱长都相等,DE分别是CC1AB1的中点,点FBC上且满足BFFC=1∶3 
(1)若MAB中点,求证 BB1∥平面EFM
(2)求证 EFBC
(3)求二面角A1B1DC1的大小  

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

棱长为1的正方体的8个顶点都在球的表面上,分别
是棱的中点,则直线被球截得的线段长为(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知异面直线l1l2l1l2MNl1l2的公垂线,MN = 4,Al1Bl2AM = BN = 2,OMN中点.①求l1OB的成角.②求A点到OB距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

四棱锥P-ABCD的底面是矩形,侧面PAD是正三角形,且侧面PAD底面ABCD,当的值等于多少时,能使PBAC?并给出证明.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知ab为直线,α、β为平面.在下列四个命题中,
① 若a⊥α,b⊥α,则ab;  ② 若 a∥α,b ∥α,则ab
③ 若a⊥α,a⊥β,则α∥β;  ④ 若α∥b,β∥b,则α∥β.
正确命题的个数是
A.1B.3C.2D.0

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

四面体中,面与面的二面角,顶点在面上的射影的垂心,的重心,若,则     

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知四棱锥中,平面,底面为菱形,=60是线段的中点.
(1)求证:
(2)求平面与平面所成锐二面角的大小;
(3)在线段上是否存在一点,使得∥平面PAE,并给出证明.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

长方体ABCDA1B1C1D1的8个顶点在同一球面上,且AB=2,AD=,AA1=1,则顶点AB间的球面距离是           (   )
A.2B.C.D.

查看答案和解析>>

同步练习册答案