精英家教网 > 高中数学 > 题目详情
15.根据下列条件,求函数解析式:
(1)已知f(x)是一次函数,且满足3f(x+1)-2f(x)=2x+17,求f(x); 
(2)已知g(x+1)=x2+3x,求g(x).

分析 (1)设f(x)=ax+b,由于3f(x+1)-2f(x)=2x+17,可得3a(x+1)+3b-2(ax+b)=2x+17,化简即可得出;
(2)g(x+1)=x2+3x=(x+1)2+(x+1)-2,即可得出.

解答 解:(1)设f(x)=ax+b,∵满足3f(x+1)-2f(x)=2x+17,
∴3a(x+1)+3b-2(ax+b)=2x+17,化为ax+(3a+b)=2x+17,
∴a=2,3a+b=17,b=11,
∴f(x)=2x+11.
(2)g(x+1)=x2+3x=(x+1)2+(x+1)-2,
∴g(x)=x2+x-2.

点评 本题考查了一次函数的解析式、配方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.如图,直三棱柱(侧棱与底面垂直的棱柱)ABC-A1B1C1中,点G是AC的中点.
(1)求证:B1C∥平面 A1BG;
(2)若AB=BC,AC=$\sqrt{2}{A}{{A}_1}$,求证:AC1⊥A1B.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.全集U=R,若集合A={x|3<x≤10},B={x|2<x≤7}.
(1)求A∩B,A∪B;
(2)求(∁UA)∪B,(∁UA)∪(∁UB)
(3)若集合C={x|x>a},B⊆C,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.下列命题中,命题的否定是假命题的是(  )
A.?x∈R,x2<x+1B.?x∈R,x2≥x+1
C.?x∈R,?y∈R,xy2=y2D.?x∈R,?y∈R,x>y2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.下列函数是偶函数的是(  )
A.y=xB.y=2x2C.y=x${\;}^{-\frac{1}{2}}$D.y=x2,x∈[0,1]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知椭圆C:9x2+16y2=1和圆O:25x2+25y2=1,直线l与圆O相切且与椭圆C交于M,N两点,则角∠MON=$\frac{π}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.${0.01^{-\frac{1}{2}}}-{(-\frac{5}{4})^0}+{7^{{{log}_7}}}^2+[{{{(lg2)}^2}+lg2•lg5+lg5}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知集合A={x|x<-1或x≥1},B={x|x≤2a或x≥a+1},若(∁RB)⊆A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若直线y=3x-1与直线x+ay+6=0平行,则实数a=-$\frac{1}{3}$.

查看答案和解析>>

同步练习册答案