分析 (1)设f(x)=ax+b,由于3f(x+1)-2f(x)=2x+17,可得3a(x+1)+3b-2(ax+b)=2x+17,化简即可得出;
(2)g(x+1)=x2+3x=(x+1)2+(x+1)-2,即可得出.
解答 解:(1)设f(x)=ax+b,∵满足3f(x+1)-2f(x)=2x+17,
∴3a(x+1)+3b-2(ax+b)=2x+17,化为ax+(3a+b)=2x+17,
∴a=2,3a+b=17,b=11,
∴f(x)=2x+11.
(2)g(x+1)=x2+3x=(x+1)2+(x+1)-2,
∴g(x)=x2+x-2.
点评 本题考查了一次函数的解析式、配方法,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | ?x∈R,x2<x+1 | B. | ?x∈R,x2≥x+1 | ||
C. | ?x∈R,?y∈R,xy2=y2 | D. | ?x∈R,?y∈R,x>y2 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com