精英家教网 > 高中数学 > 题目详情

已知,函数.
(Ⅰ)求函数的单调区间;
(Ⅱ)求函数在区间上的最小值.

(Ⅰ)时,增区间时,减区间、增区间;(Ⅱ).

解析试题分析:(Ⅰ)通过对函数求导,讨论的取值情况从而得到相应的单调区间;(Ⅱ)结合第(Ⅰ)问讨论的取值情况,判定导函数是否大于0,从而得到函数的单调性,再根据单调性得到最小值.最后将所求的最小值以分段函数的形式表现出来.
试题解析:(Ⅰ)函数的定义域为.

①当时,,所以
②当时,当.
.                      6分
(Ⅱ)(1)当时,由(Ⅰ)知
(2) 当时,
①当时,, 由(Ⅰ)知

②当时,,由(Ⅰ)知
.
③当时,
由(Ⅰ)知
综上所述,
                       13分
考点:1.用导数判断函数的单调性;2.用函数的单调性求最值;3.分类讨论思想.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数.
(1)当时,求函数上的最大值;
(2)令,若在区间上不单调,求的取值范围;
(3)当时,函数的图象与轴交于两点,且,又的导函数.若正常数满足条件.证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,函数
(I)试求f(x)的单调区间。
(II)若f(x)在区间上是单调递增函数,试求实数a的取值范围:
(III)设数列是公差为1.首项为l的等差数列,数列的前n项和为,求证:当时,.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知.
(Ⅰ)请写出的表达式(不需证明);
(Ⅱ)求的极小值
(Ⅲ)设的最大值为的最小值为,试求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)若曲线处的切线相互平行,求的值;
(2)试讨论的单调性;
(3)设,对任意的,均存在,使得.试求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(Ⅰ)当时,试讨论的单调性;
(Ⅱ)设,当时,若对任意,存在,使,求实数取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(I)当时,求的单调区间
(Ⅱ)若不等式有解,求实数m的取值菹围;
(Ⅲ)定义:对于函数在其公共定义域内的任意实数,称的值为两函数在处的差值。证明:当时,函数在其公共定义域内的所有差值都大干2。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中.
(Ⅰ)求函数的单调区间;
(Ⅱ)若直线是曲线的切线,求实数的值;
(Ⅲ)设,求在区间上的最小值.(为自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若且函数在区间上存在极值,求实数的取值范围;
(2)如果当时,不等式恒成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案