精英家教网 > 高中数学 > 题目详情
已知某几何体的三视图如图所示,则该几何体的体积等于(  )
A、
160
3
B、32
C、
32
3
D、
352
3
考点:由三视图求面积、体积
专题:空间位置关系与距离
分析:由已知可得该几何体是一个以侧视图为底面的三棱柱切去一个三棱锥所得的组合体,分别求出棱柱和棱锥的体积,相减可得答案.
解答: 解:由已知可得该几何体是一个以假视图为底面的三棱柱切去一个三棱锥所得的组合体,
其中底面面积S=
1
2
×4×4=8,
棱柱的高为8,故棱柱的体积为:8×8=64,
棱锥的高为4,故棱柱的体积为:
1
3
×8×4=
32
3

故该几何体的体积V=64-
32
3
=
160
3

故选:A
点评:本题考查由三视图求几何体的体积和表面积,根据已知的三视图分析出几何体的形状是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知P是直线l:3x-4y+11=0上的动点,PA、PB是圆C:(x-1)2+(y-1)2=1的两条切线,圆心为C,那么四边形PACB面积的最小值是(  )
A、
2
B、2
2
C、
3
D、2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

方程lnx+2x=6的根属于区间(  )
A、(1,2)
B、(
5
2
,4)
C、(1,
7
4
D、(
7
4
5
2

查看答案和解析>>

科目:高中数学 来源: 题型:

如果方程x2-ky2=2表示焦点在y轴上的椭圆,那么实数k的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=lg(-x2+2x+8)的单调递减区间为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设{an}是等比数列,则“a1<a2<a3”是“数列{an}是递增数列”的
 
条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=32x-(k+1)3x-2,当x∈[1,+∞]时,f(x)恒为正值,则k的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x
1+x2
是定义在(-1,1)上的函数.
(Ⅰ)判断函数f(x)的奇偶性(不需证明);
(Ⅱ)用定义法证明函数f(x)在(-1,1)上是增函数;
(Ⅲ)解不等式f(x-1)+f(x)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:

记不等式组
x+y-4≤0
3x-2y+3≥0
x-4y+1≥0
所表示的区域为D.
(1)求区域D的面积;
(2)设Q(x,y)为区域D内一动点,求z=
y-2
x+4
的取值范围.

查看答案和解析>>

同步练习册答案