精英家教网 > 高中数学 > 题目详情

【题目】如图,长方体ABCD﹣A1B1C1D1中,AA1=AD=1,AB=2,点E是C1D1的中点.
(1)求证:DE⊥平面BCE;
(2)求二面角A﹣EB﹣C的大小.

【答案】(1)证明:建立如图所示的空间直角坐标系,
则D(0,0,0),E(0,1,1),
B(1,2,3),C(0,2,0),
=(0,1,1),=(﹣1,﹣1,1),=(﹣1,0,0),
=0,=0,
∴DE⊥BE,DE⊥BC,
∵BE平面BCE,BC平面BCE,BE∩BC=B,
∴DE⊥平面BCE.
(2)解:设平面AEB的法向量=(x,y,z),

取x=1,得=(1,0,1),
∵DE⊥平面BCE,∴=(0,1,1)是平面BCE的法向量,
∵cos<,>==
∴二面角A﹣EB﹣C的大小为120°.

【解析】(1)建立如图所示的空间直角坐标系,利用向量法能证明DE⊥平面BCE.
(2)求出平面AEB的法向量和平面BCE的法向量,再利用向量法求出二面角A﹣EB﹣C的大小.
【考点精析】认真审题,首先需要了解直线与平面垂直的判定(一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直;注意点:a)定理中的“两条相交直线”这一条件不可忽视;b)定理体现了“直线与平面垂直”与“直线与直线垂直”互相转化的数学思想).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)是定义在R上的奇函数,并且当x∈(0,+∞)时,f(x)=2x
(1)求f(log2 )的值;
(2)求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆 的离心率,短轴右端点为为线段的中点.

(Ⅰ) 求椭圆的方程;

(Ⅱ)过点任作一条直线与椭圆相交于两点,试探究在轴上是否存在定点,使得,若存在,求出点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某车间为了规定工时定额,需要确定加工某零件所花费的时间,为此做了四次实验,得到的数据如表:

零件的个数x(个)

2

3

4

5

加工的时间y(小时)

2.5

3

4

4.5


(1)在给定的坐标系中画出表中数据的散点图;

(2)求出y关于x的线性回归方程y= x+ ,并在坐标系中画出回归直线;
(3)试预测加工6个零件需要多少时间?
(注: = =

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有下列命题:
①双曲线与椭圆有相同的焦点;
②“”是“2x2﹣5x﹣3<0”必要不充分条件;
③“若xy=0,则x、y中至少有一个为0”的否命题是真命题.;
④若p是q的充分条件,r是q的必要条件,r是s的充要条件,则s是p的必要条件;
其中是真命题的有: .(把你认为正确命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设命题p:实数x满足x2﹣4ax+3a2<0,其中a>0,命题q:实数x满足
(Ⅰ)若a=1,且p∧q为真,求实数x的取值范围;
(Ⅱ)若¬p是¬q的充分不必要条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lnx+2sinα(α∈(0,))的导函数f′(x),若存在x0<1使得f′(x0)=f(x0)成立,则实数α的取值范围为(  )
A.(
B.(0,
C.(
D.(0,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的中心在原点,焦点在轴上,离心率.以两个焦点和短轴的两个端点为顶点的四边形的周长为8,面积为

(Ⅰ)求椭圆的方程;

(Ⅱ)若点为椭圆上一点,直线的方程为,求证:直线与椭圆有且只有一个交点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义向量 =(a,b)的“相伴函数”为f(x)=asinx+bcosx,函数f(x)=asinx+bcosx的“相伴向量”为 =(a,b)(其中O为坐标原点).记平面内所有向量的“相伴函数”构成的集合为S.
(1)设g(x)=3sin(x+ )+4sinx,求证:g(x)∈S;
(2)已知h(x)=cos(x+α)+2cosx,且h(x)∈S,求其“相伴向量”的模;
(3)已知M(a,b)(b≠0)为圆C:(x﹣2)2+y2=1上一点,向量 的“相伴函数”f(x)在x=x0处取得最大值.当点M在圆C上运动时,求tan2x0的取值范围.

查看答案和解析>>

同步练习册答案