精英家教网 > 高中数学 > 题目详情

【题目】在极坐标系中,已知曲线的方程为,曲线的方程为.以极点为原点,极轴为轴正半轴建立直角坐标系

(1)求曲线的直角坐标方程;

(2)若曲线轴相交于点,与曲线相交于两点,求的值.

【答案】(1)曲线的直角坐标方程为;曲线的直角坐标方程为;(2).

【解析】

1)根据即可化简两个极坐标方程,从而得到所求直角坐标方程;(2)根据的直角坐标方程可得其参数方程的标准形式,代入的直角坐标方程中,利用的几何意义,将所求问题变为求解,根据韦达定理得到结果.

(1)由,得

曲线的直角坐标方程为

,得

曲线的直角坐标方程为:

2)由(1)知曲线为直线,倾斜角为,点的直角坐标为

直线的参数方程为为参数)

代入曲线中,并整理得

对应的参数分别为,则

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知点为抛物线的焦点,点在抛物线上,且

1)求抛物线的方程;

2)已知点,延长交抛物线于点,证明:以点为圆心且与直线相切的圆,必与直线相切.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】分别是椭圆的左、右焦点.

(1)若是该椭圆上的一个动点,求的最大值和最小值;

(2)设过定点的直线与椭圆交于不同的两点,且为锐角(其中为坐标原点),求直线的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中:

①已知点,动点满足,则点的轨迹是一个圆;

②已知,则动点的轨迹是双曲线;

③两个随机变量的线性相关性越强,则相关系数的绝对值就越接近于1

④在平面直角坐标系内,到点和直线的距离相等的点的轨迹是抛物线;

正确的命题是_________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数()的导函数为.

(Ⅰ)当时,求的最小值;

(Ⅱ)若函数存在极值,试比较的大小,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={(xy)||xa|+|y﹣1|≤1},B={(xy)|(x﹣1)2+(y﹣1)2≤1},若AB,则实数a的取值范围为_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱锥PABC中,PC⊥平面ABCPCAC=2,ABBCDPB上一点,且CD⊥平面PAB

(1)求证:AB⊥平面PCB

(2)求二面角CPAB的大小的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】采用系统抽样方法从1000人中抽取50人做问卷调查,为此将他们随机编号1,, ,1000,适当分组后在第一组采用简单随机抽样的方法抽到的号码为8,抽到的50人中,编号落入区间的人做问卷A,编号落入区间的人做问卷B,其余的人做问卷C,则抽到的人中,做问卷C的人数为( )

A. 12 B. 13 C. 14 D. 15

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为践行“绿水青山就是金山银山”的发展理念,某城区对辖区内三类行业共200个单位的生态环境治理成效进行了考核评估,考评分数达到80分及其以上的单位被称为“星级”环保单位,未达到80分的单位被称为“非星级”环保单位.现通过分层抽样的方法获得了这三类行业的20个单位,其考评分数如下:

类行业:858277788387

类行业:766780857981

类行业:8789768675849082

(Ⅰ)计算该城区这三类行业中每类行业的单位个数;

(Ⅱ)若从抽取的类行业这6个单位中,再随机选取3个单位进行某项调查,求选出的这3个单位中既有“星级”环保单位,又有“非星级”环保单位的概率.

查看答案和解析>>

同步练习册答案