【题目】在极坐标系中,已知曲线的方程为,曲线的方程为.以极点为原点,极轴为轴正半轴建立直角坐标系.
(1)求曲线,的直角坐标方程;
(2)若曲线与轴相交于点,与曲线相交于,两点,求的值.
科目:高中数学 来源: 题型:
【题目】已知点为抛物线的焦点,点在抛物线上,且.
(1)求抛物线的方程;
(2)已知点,延长交抛物线于点,证明:以点为圆心且与直线相切的圆,必与直线相切.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设分别是椭圆的左、右焦点.
(1)若是该椭圆上的一个动点,求的最大值和最小值;
(2)设过定点的直线与椭圆交于不同的两点,且为锐角(其中为坐标原点),求直线的斜率的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列命题中:
①已知点,动点满足,则点的轨迹是一个圆;
②已知,则动点的轨迹是双曲线;
③两个随机变量的线性相关性越强,则相关系数的绝对值就越接近于1;
④在平面直角坐标系内,到点和直线的距离相等的点的轨迹是抛物线;
正确的命题是_________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知集合A={(x,y)||x﹣a|+|y﹣1|≤1},B={(x,y)|(x﹣1)2+(y﹣1)2≤1},若A∩B≠,则实数a的取值范围为_____.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,三棱锥P﹣ABC中,PC⊥平面ABC,PC=AC=2,AB=BC,D是PB上一点,且CD⊥平面PAB.
(1)求证:AB⊥平面PCB;
(2)求二面角C﹣PA﹣B的大小的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】采用系统抽样方法从1000人中抽取50人做问卷调查,为此将他们随机编号1,, ,1000,适当分组后在第一组采用简单随机抽样的方法抽到的号码为8,抽到的50人中,编号落入区间的人做问卷A,编号落入区间的人做问卷B,其余的人做问卷C,则抽到的人中,做问卷C的人数为( )
A. 12 B. 13 C. 14 D. 15
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为践行“绿水青山就是金山银山”的发展理念,某城区对辖区内,,三类行业共200个单位的生态环境治理成效进行了考核评估,考评分数达到80分及其以上的单位被称为“星级”环保单位,未达到80分的单位被称为“非星级”环保单位.现通过分层抽样的方法获得了这三类行业的20个单位,其考评分数如下:
类行业:85,82,77,78,83,87;
类行业:76,67,80,85,79,81;
类行业:87,89,76,86,75,84,90,82.
(Ⅰ)计算该城区这三类行业中每类行业的单位个数;
(Ⅱ)若从抽取的类行业这6个单位中,再随机选取3个单位进行某项调查,求选出的这3个单位中既有“星级”环保单位,又有“非星级”环保单位的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com