精英家教网 > 高中数学 > 题目详情
在四棱锥P-ABCD中,底面ABCD为菱形,∠BAD=60°,Q为AD的中点,点M在线段PC上,PM=tPC,PA∥平面MQB,则实数t=
 
考点:直线与平面平行的判定
专题:空间位置关系与距离
分析:连AC交BQ于N,交BD于O,说明PA∥平面MQB,利用PA∥MN,根据三角形相似,即可得到结论;
解答: 解:连AC交BQ于N,交BD于O,连接MN,如图

则O为BD的中点,
又∵BQ为△ABD边AD上中线,∴N为正三角形ABD的中心,
令菱形ABCD的边长为a,则AN=
3
3
a,AC=
3
a.
∵PA∥平面MQB,PA?平面PAC,平面PAC∩平面MQB=MN
∴PA∥MN
∴PM:PC=AN:AC
即PM=
1
3
PC,t=
1
3

故答案为:
1
3
点评:本题考查了线面平行的性质定理的运用,关键是将线面平行转化为线线平行,利用平行线分线段成比例解答.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

命题“存在实数a,使得方程x2-3x+a=0有实数解”的否定形式为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的两条对称轴是坐标轴,O是坐标原点,F是一个焦点,A是一个顶点,若椭圆的长轴长为6,且cos∠OFA=
2
3
,求椭圆方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

平面直角坐标系xOy中,直线2x+y+2=0经过椭圆M:
x2
a2
+
y2
b2
=1(a>b>0)的左焦点且与椭圆M交于A,B两点,其中点A是椭圆的一个顶点,
(Ι)求椭圆M的方程;
(Ⅱ)C,D为M上的两点,若四边形ACBD的对角线CD⊥AB,求四边形ACBD面积S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

当a,b∈(0,+∞)时,aabb≥(ab) 
a+b
2

查看答案和解析>>

科目:高中数学 来源: 题型:

计算:
tan100°-tan40°+tan120°
tan40°tan80°tan120°

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义域为[0,1]上的函数f(x)=1-|1-2x|和g(x)=(x-1)2,且记min{x1、x2、x3…、xn}为x1、x2、x3…、xn中的最小值.
(1)求F(x)=min{f(x),g(x)}的函数解析式;
(2)求F(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

用反证法证明命题:“在△ABC中,若∠C使直角,则∠B一定是锐角”,假设正确的是(  )
A、假设△ABC不是锐角三角形
B、假设∠B>90°
C、假设∠B≥90°
D、假设∠B=90°

查看答案和解析>>

科目:高中数学 来源: 题型:

过双曲线C:
x2
4
-
y2
9
=1的左焦点作倾斜角为
π
6
的直线l,则直线l与双曲线C的交点情况是(  )
A、没有交点
B、只有一个交点
C、两个交点都在左支上
D、两个交点分别在左、右支上

查看答案和解析>>

同步练习册答案