精英家教网 > 高中数学 > 题目详情
1.已知函数f(x)=x2+4[sin(θ+$\frac{π}{3}$)]x-2,θ∈[0,2π).
(1)若函数f(x)为偶函数,求tanθ的值;
(2)若f(x)在[-$\sqrt{3}$,1]上是单调函数,求θ的取值范围.

分析 (1)由函数为偶函数可得f(-x)-f(x)=0,整理后即可求得θ值,进一步求得tanθ的值;
(2)求出已知二次函数的对称轴方程,结合f(x)在[-$\sqrt{3}$,1]上是单调函数得到关于θ的三角不等式,求解三角不等式得答案.

解答 解:(1)由f(x)=x2+4[sin(θ+$\frac{π}{3}$)]x-2为偶函数,
得f(-x)-f(x)=0,即x2-4[sin(θ+$\frac{π}{3}$)]x-2-x2-4[sin(θ+$\frac{π}{3}$)]x+2=-8[sin(θ+$\frac{π}{3}$)]x=0,
∴sin(θ+$\frac{π}{3}$)=0,
∵θ∈[0,2π),∴θ+$\frac{π}{3}$∈[$\frac{π}{3}$,$\frac{7π}{3}$),
则θ+$\frac{π}{3}$=π或θ+$\frac{π}{3}$=2π,
∴θ=$\frac{2π}{3}$或θ=$\frac{5π}{3}$.
当$θ=\frac{2π}{3}$时,tanθ=$-\sqrt{3}$;当$θ=\frac{5π}{3}$时,tanθ=$-\sqrt{3}$;
(2)函数f(x)=x2+4[sin(θ+$\frac{π}{3}$)]x-2的对称轴方程为x=-2sin(θ+$\frac{π}{3}$),
要使f(x)在[-$\sqrt{3}$,1]上是单调函数,
则-2sin(θ+$\frac{π}{3}$)$≤-\sqrt{3}$或-2sin(θ+$\frac{π}{3}$)≥1,
即sin(θ+$\frac{π}{3}$)$≥\frac{\sqrt{3}}{2}$或sin(θ+$\frac{π}{3}$)$≤-\frac{1}{2}$.
∵θ+$\frac{π}{3}$∈[$\frac{π}{3}$,$\frac{7π}{3}$),
∴θ+$\frac{π}{3}$∈[$\frac{π}{3}$,$\frac{2π}{3}$]或θ+$\frac{π}{3}$∈[$\frac{7π}{6}$,$\frac{11π}{6}$].
∴θ∈[0,$\frac{π}{3}$]∪[$\frac{5π}{6}$,$\frac{3π}{2}$].

点评 本题考查函数奇偶性与单调性的判定及应用,考查三角函数的图象和性质,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.下列说法正确的是(  )
A.若p:?x∈R,x2+3x+5>0,则¬p:?x0∈R,x02+3x0+5<0
B.“若α=$\frac{π}{3}$,则cosα=$\frac{1}{2}$”的否命题是“若α=$\frac{π}{3}$,则cosα≠$\frac{1}{2}$”
C.已知A,B是△ABC的两个内角,则“A>B”是“sinA>sinB”的充要条件
D.命题“p∨q为真”是命题“p∧q为真”的充分不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,AB是圆O的直径,PA垂直圆所在的平面,C是圆上的点.
( I)求证:平面PAC⊥平面PBC;
( II)若AC=1,PA=1,求圆心O到平面PBC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知指数函数y=g(x)满足:g($\frac{1}{2}$)=$\sqrt{2}$,定义域为R的函数f(x)=$\frac{1-g(x)}{m+2g(x)}$是奇函数.
(1)确定y=f(x)和y=g(x)的解析式;
(2)判断函数f(x)的单调性,并用定义证明;
(3)解关于t的不等式f(t2-2t)+f(2t2-1)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知向量$\overrightarrow a$=(2,-1),$\overrightarrow b$=(x,1)(x∈R).
(1)若$\overrightarrow a,\overrightarrow b$的夹角为锐角,求x的范围;
(2)当3$\overrightarrow a-2\overrightarrow b$=(4,y)时,求x+y的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知条件p:k=$\sqrt{3}$;条件q:直线y=kx+2与圆x2+y2=1相切,则¬p是¬q的(  )
A.充分必要条件B.必要不充分条件
C.充分不必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.“a=-1”是“直线x+ay=1与直线ax+y=5平行”的(  )条件.
A.充分但不必要B.必要但不充分
C.充分D.既不充分也不必要

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.从区间[0,1]内任取两个数x,y,则x+y≤1的概率为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若直线经过A(1,0)、B(0,-1)两点,则直线AB的倾斜角为$\frac{π}{4}$.

查看答案和解析>>

同步练习册答案