精英家教网 > 高中数学 > 题目详情

【题目】某城市的公交公司为了方便市民出行,科学规划车辆投放,在一个人员密集流动地段增设一个起点站,为了研究车辆发车间隔时间与乘客等候人数之间的关系,经过调查得到如下数据:

间隔时间(分钟)

10

11

12

13

14

15

等侯人数(人)

23

25

26

29

28

31

调查小组先从这6组数据中选取4组数据求线性回归方程,再用剩下的2组数据进行检验.检验方法如下:先用求得的线性回归方程计算间隔时间对应的等候人数,再求与实际等候人数的差,若差值的绝对值不超过1,则称所求方程是“恰当回归方程”.

1)若选取的是后面4组数据,求关于的线性回归方程,并判断此方程是否是“恰当回归方程”;

2)为了使等候的乘客不超过35人,试用(1)中方程估计间隔时间最多可以设置为多少(精确到整数)分钟?

附:对于一组数据,……,,其回归直线的斜率和截距的最小二乘估计分别为:

【答案】1,是;(218分钟.

【解析】

1)由题意求出,代入公式求得即可求得线性回归方程;根据“恰当回归方程”的概念直接判断即可得解;

2)令,解出后,即可得解.

1)由后面四组数据求得

.

.

时,,而

时,,而.

∴求出的线性回归方程是“恰当回归方程”;

2)由,得,故间隔时间最多可设置为分钟.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图是某市101日至14日的空气质量指数趋势图,空气质量指数越小表示空气质量越好,空气质量指数小于100表示空气质量优良,下列叙述中不正确的是(

A.14天中有7天空气质量优良

B.14天中空气质量指数的中位数是103

C.1011日到1014日,空气质量越来越好

D.连续三天中空气质量指数方差最大的是105日至107

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某大学高等数学这学期分别用两种不同的数学方式试验甲、乙两个大一新班(人数均为人,入学数学平均分和优秀率都相同;勤奋程度和自觉性都一样).现随机抽取甲、乙两班各名的高等数学期末考试成绩,得到茎叶图:

(1)学校规定:成绩不得低于85分的为优秀,请填写下面的列联表,并判断“能否在犯错误率的概率不超过0.025的前提下认为成绩优异与教学方式有关?”

下面临界值表仅供参考:

(参考方式:,其中

(2)现从甲班高等数学成绩不得低于80分的同学中随机抽取两名同学,求成绩为86分的同学至少有一个被抽中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直三棱柱中,P的中点.

1)证明:平面

2)设EBC的中点,线段上是否存在一点Q,使得平面?若存在,求四棱锥的体积;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设抛物线的焦点为,直线与抛物线交于两点.

1)若过点,且,求的斜率;

2)若,且的斜率为,当时,求轴上的截距的取值范围(用表示),并证明的平分线始终与轴平行.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在宽为的路边安装路灯,灯柱高为,灯杆是半径为的圆的一段劣弧.路灯采用锥形灯罩,灯罩顶到路面的距离为,到灯柱所在直线的距离为.设为灯罩轴线与路面的交点,圆心在线段上.

(1)当为何值时,点恰好在路面中线上?

(2)记圆心在路面上的射影为,且在线段上,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】足球比赛中,一队在本方罚球区内犯规,会被判罚点球,点球是进攻方非常有效的得分手段.研究机构对某位足球队员的1000次点球训练进行了统计分析,以帮助球员提高点球的命中率.如图,将球门框内的区域分成9个区域(区域代码为1—9,球门框外的区域记做区域0),统计球员射点球时射中10个区域次数和进球次数(即使射中球门框内,也可能被守门员扑出),得到如下的两个频率分布条形图:

(其中射中率,得分率

1)根据上述频率分布条形图,求射中球门框内时,各区域进球数的平均数(结果保留两位小数)和中位数;

2)以该队员这1000次点球练习的进球频率作为他在比赛中射点球时进球的概率,设他在三次射点球时进球数为,求的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】20203月,国内新冠肺炎疫情得到有效控制,人们开始走出家门享受春光.某旅游景点为吸引游客,推出团体购票优惠方案如下表:

购票人数

1~50

51~100

100以上

门票价格

13/

11/

9/

两个旅游团队计划游览该景点.若分别购票,则共需支付门票费1290元;若合并成个团队购票,则需支付门票费990元,那么这两个旅游团队的人数之差为(

A.20B.30C.35D.40

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,椭圆的左顶点为,过点的直线与椭圆交于轴上方一点,以为边作矩形,其中直线过原点.当点为椭圆的上顶点时,的面积为,且

1)求椭圆的标准方程;

2)求矩形面积的最大值;

3)矩形能否为正方形?请说明理由.

查看答案和解析>>

同步练习册答案