精英家教网 > 高中数学 > 题目详情
如图,三棱锥P-ABC中,PB⊥底面ABC,AC⊥BC,PB=BC=AC,点E、F分别是PC、PA的中点.
(Ⅰ)求证:PC⊥平面BEF;
(Ⅱ)求二面角A-EB-F的大小.
分析:方法一:(Ⅰ)利用线面垂直的判定定理,证明BE⊥PC,EF⊥PC,即可得到PC⊥平面BEF;
(Ⅱ)先判断∠AEF为二面角A-EB-F的平面角,再在△AEF中,利用余弦定理,可求二面角A-EB-F的大小;
方法(二):向量法,建立坐标系,用坐标表示点,用坐标表示向量
(Ⅰ)证明
PC
EF
=0+0+0=0
,从而可证PC⊥平面BEF;
(Ⅱ)先判断向量
EA
EF
的夹角为所求,再利用向量夹角公式,即可求得二面角A-EB-F的大小.
解答:方法(一)
(Ⅰ)证明:由已知可得△PBC为等腰直角三角形,则BE⊥PC.    (1分)
由PB⊥平面ABC,AC?平面ABC,则PB⊥AC.
又AC⊥BC,BC∩PB=B,
则AC⊥平面PBC,由PC?平面PBC,得AC⊥PC. (3分)
由中位线定理得,EF∥CA,于是EF⊥PC,又BE∩EF=E,
所以PC⊥平面BEF.           (6分)
(Ⅱ)解:由第(Ⅰ)问,已证明AC⊥平面PBC,又BE?平面PBC,
则AC⊥BE.已证明BE⊥PC,又PC∩AC=C,则BE⊥平面PAC.
因为EF?平面PAC,AE?平面PAC,所以BE⊥EF,BE⊥AE.
由二面角的定义,得∠AEF为二面角A-EB-F的平面角.(9分)
设PB=BC=AC=2,则PE=EC=
2
AB=2
2

在Rt△PAB中,PB=2,AB=2
2
,所以PA=2
3

在Rt△ACE中,AC=2,EC=
2
,∴AE=
6

在△AEF中,由余弦定理得,cos∠AEF=
EF2+AE2-AF2
2•EF•AE
=
1+6-3
2•1•
6
=
6
3

则二面角A-EB-F的大小为arccos
6
3
.        (12分)
方法(二)
如图建立空间直角坐标系,设PB=BC=AC=2,可求出以下各点的坐标:A(2,2,0),B(0,0,0),C(2,0,0),
P(0,0,2),E(1,0,1),F(1,1,1)
(Ⅰ)
PC
=(2, 0,- 2)
BE
=(1, 0, 1)
EF
=(0, 1, 0)

PC
BE
=2+0-2=0
PC
EF
=0+0+0=0

于是PC⊥BE,PC⊥EF,又BE∩EF=E,则PC⊥平面BEF.          (6分)
(Ⅱ)
EA
=(1, 2, -1)
,有
EA
BE
=1+0-1=0
EF
BE
=0+0+0=0

于是EA⊥BE,EF⊥BE,由二面角定义,向量
EA
EF
的夹角为所求.
cos<
EA
EF
>=
0+2+0
1•
1+4+1
=
6
3

所以二面角A-EB-F的大小为arccos
6
3
.   (12分)
点评:本小题主要考查三棱锥,直线与平面的垂直,二面角的计算,考查空间想象能力、思维能力和运算能力.两法并举,既展现传统方法,又体现向量法的优点.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,三棱锥P-ABC中,PC⊥平面ABC,PC=AC=2,AB=BC,D是PB上一点,且CD⊥平面PAB
(Ⅰ)求证:AB⊥平面PCB;
(Ⅱ)求二面角C-PA-B的大小的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•石景山区一模)如图,三棱锥P-ABC中,
PA
AB
=
PA
AC
=
AB
AC
=0
PA
2
=
AC
2
=4
AB
2

(Ⅰ)求证:AB⊥平面PAC;
(Ⅱ)若M为线段PC上的点,设
|
PM|
|PC
|
,问λ为何值时能使直线PC⊥平面MAB;
(Ⅲ)求二面角C-PB-A的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•湖南模拟)如图,三棱锥P-ABC中,侧面PAC⊥底面ABC,∠APC=90°,且AB=4,AP=PC=2,BC=2
2

(Ⅰ)求证:PA⊥平面PBC;
(Ⅱ)若E为侧棱PB的中点,求直线AE与底面ABC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•德阳二模)如图,三棱锥P-ABC中,PA丄面ABC,∠ABC=90°,PA=AB=1,BC=2,则P-ABC的外接球的表面积为

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图在三棱锥P-ABC中,AB⊥PC,AC=2,BC=4,AB=2
3
,∠PCA=30°.
(1)求证:AB⊥平面PAC. (2)设二面角A-PC-B•的大小为θ•,求tanθ•的值.

查看答案和解析>>

同步练习册答案