【题目】已两动圆和,把它们的公共点的轨迹记为曲线,若曲线与轴的正半轴交点为,且曲线上异于点的相异两点、满足.
(1)求曲线的方程;
(2)证明直线恒经过一定点,并求出此定点的坐标.
【答案】(1);(2)直线恒过定点。
【解析】
(1)设两动圆的公共点为,则有,运用椭圆的定义,即可得到,,,进而得到的轨迹方程;
(2),设,,,,根据直线的斜率不存在和存在,设出直线方程,根据条件,运用向量的数量积的坐标表示,结合韦达定理和直线恒过定点的求法,即可得到定点;
解:(1)设两动圆的公共点为,则有.
由椭圆的定义可知的轨迹是以、为焦点椭圆,且.,
所以曲线的方程是:.
(2)证明:由题意可知:,设,,,,
当的斜率不存在时,易知满足条件的直线为:,过定点;
当的斜率存在时,设直线,联立方程组:,
把②代入①有:,
③,④,
因为,所以有即,
,
把③④代入整理:,
(有公因式继续化简得,或(舍去,
综上,直线恒过定点.
科目:高中数学 来源: 题型:
【题目】已知抛物线与椭圆有一个相同的焦点,过点且与轴不垂直的直线与抛物线交于,两点,关于轴的对称点为.
(1)求抛物线的方程;
(2)试问直线是否过定点?若是,求出该定点的坐标;若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若四面体的三组对棱分别相等,即,给出下列结论:
①四面体每组对棱相互垂直;
②四面体每个面的面积相等;
③从四面体每个顶点出发的三条棱两两夹角之和大而小于;
④连接四面体每组对棱中点的线段相互垂直平分.
其中正确结论的序号是__________. (写出所有正确结论的序号)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】央视春晚长春分会场,演员身穿独特且轻薄的石墨烯发热服,在寒气逼人的零下春晚现场表演了精彩的节目.石墨烯发热服的制作:从石墨中分离出石墨烯,制成石墨烯发热膜,再把石墨烯发热膜铺到衣服内.
(1)从石墨分离石墨烯的一种方法是化学气相沉积法,使石墨升华后附着在材料上再结晶。现在有材料、材料供选择,研究人员对附着在材料上再结晶做了次试验,成功次;对附着在材料上再结晶做了次试验,成功次.用二列联表判断:是否有的把握认为试验是否成功与材料和材料的选择有关?
材料 | 材料 | |
成功 | ||
不成功 |
(2)研究人员得到石墨烯后,再制作石墨烯发热膜有四个环节:①透明基底及胶层;②石墨烯层;③银浆线路;④表面封装层。前三个环节每个环节生产合格的概率为,每个环节不合格需要修复的费用均为元;第四环节生产合格的概率为元,问:一次生产出来的石墨烯发热膜成为合格品平均需要多少修复费用?
附:,其中.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下列4个命题,其中正确命题的序号____________.
①;
②函数有个零点;
③函数的图象关于点对称。
④已知,函数的图象过点,则的最小值是.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程(本题满分10分)
在平面直角坐标系中,将曲线向左平移2个单位,再将得到的曲线上的每一个点的横坐标保持不变,纵坐标缩短为原来的,得到曲线,以坐标原点为极点,轴的正半轴为极轴,建立极坐标系,的极坐标方程为.
(1)求曲线的参数方程;
(2)已知点在第一象限,四边形是曲线的内接矩形,求内接矩形周长的最大值,并求周长最大时点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在直三棱柱中,,点分别为棱的中点.
(Ⅰ)求证:∥平面
(Ⅱ)求证:平面平面;
(Ⅲ)在线段上是否存在一点,使得直线与平面所成的角为300?如果存在,求出线段的长;如果不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线上两点、,焦点满足,线段的垂直平分线过.
(1)求抛物线的方程;
(2)过点作直线,使得抛物线上恰有三个点到直线的距离都为,求直线的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com