精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的离心率为,上顶点到直线的距离为.

(1)求椭圆的方程;

(2)是否存在过点的直线与椭圆交于不同的两点,线段的中点为,使得?若存在,求直线的方程;若不存在,请说明理由.

【答案】(1) .(2)不存在直线满足题意.

【解析】试题分析:(1)由上顶点到直线的距离为,可得,在由离心率即,即可求解的值,得到椭圆的方程.

(2)设直线的方程为,联立方程组,利用,得到,设交点的中点为,得,再利用,转化为,即可推导处矛盾,从而得出结论.

试题解析:

(1)由题可得,可得

故椭圆的方程为.

(2)假设存在满足条件的直线,易知在椭圆的外部,

当直线的斜率不存在时,直线与椭圆无交点,所以直斜率存在,设斜率为

则直线的方程为

由方程组,得

依题意

时,设交点的中点为

所以

所以

所以,而不成立,

所以不存在直线,使得.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】给出下列四个命题:①若,则②若,则③若,则④若,则的最小值为9;其中正确命题的序号是______(将你认为正确的命题序号都填上).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知长方体ABCD-A1B1C1D1中,AB=3,BC=2,CC1=5,E是棱CC1上不同于端点的点,且

(1) 当BEA1为钝角时,求实数λ的取值范围;

(2) 若λ,记二面角B1-A1B-E的的大小为θ,求|cosθ|.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为矩形, ,

.

(1)求直线与平面所成角的正弦值;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地棚户区改造建筑平面示意图如图所示,经规划调研确定,棚改规划建筑用地区域近似为圆面,该圆面的内接四边形是原棚户区建筑用地,测量可知边界万米,万米,万米.

(1)请计算原棚户区建筑用地的面积及的长;

(2)因地理条件的限制,边界不能更改,而边界可以调整,为了提高棚户区建筑用地的利用率,请在圆弧上设计一点,使得棚户区改造后的新建筑用地的面积最大,并求出最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】本题满分12分已知极坐标系的极点与直角坐标系的原点重合极轴与直角坐标系的x轴的正半轴重合且两个坐标系的单位长度相同已知直线l的参数方程为t为参数曲线C的极坐标方程为

若直线l的斜率为-1求直线l与曲线C交点的极坐标

若直线l与曲线C相交弦长为求直线l的参数方程标准形式

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线和椭圆有公共的焦点,且离心率为

)求双曲线的方程.

)经过点作直线交双曲线 两点,且的中点,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,过底面是矩形的四棱锥FABCD的顶点FEFAB,使AB=2EF,且平面ABFE⊥平面ABCD,若点GCD上且满足DG=G.

求证:(1)FG∥平面AED;

(2)平面DAF⊥平面BAF.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知复数z=+(a25a-6)i(a∈R).试求实数a分别为什么值时,z分别为(1)实数?(2)虚数?(3)纯虚数?

查看答案和解析>>

同步练习册答案