精英家教网 > 高中数学 > 题目详情

【题目】设p:实数x满足x2﹣4ax+3a2<0,其中a>0; q:实数x满足 <0.
(1)若a=1,且p∨q为真,求实数x的取值范围;
(2)若p是q的必要不充分条件,求实数a的取值范围.

【答案】
(1)解:由x2﹣4ax+3a2<0,得(x﹣3a)(x﹣a)<0,

又a>0,所以a<x<3a,

当a=1时,1<x<3,即p为真时实数x的取值范围是1<x<3.

q为真时 等价于(x﹣2)(x﹣3)<0,得2<x<3,

即q为真时实数x的取值范围是2<x<3.

若p∨q为真,则实数x的取值范围是1<x<3


(2)解:p是q的必要不充分条件,等价于qp且p推不出q,

设A={x|a<x<3a},B={x|2<x<3},则BA;

所以实数a的取值范围是1≤a≤2


【解析】(1)利用一元二次不等式的解法可化简命题p,q,若p∨q为真,则p,q至少有1个为真,即可得出;(2)根据p是q的必要不充分条件,即可得出.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在长方体ABCD﹣A1B1C1D1中,AA1=AD=a,E为CD上任意一点.
(I)求证:B1E⊥AD1
(Ⅱ)若CD= a,是否存在这样的E点,使得AD1与平面B1AE成45°的角?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,平面平面,底面为梯形,,且均为正三角形,的中点,重心.

(1)求证:平面

(2)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,当x = -1时取得极大值7,当x = 3时取得极小值;

(1)求a,b的值;

(2)求f(x)的极小值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)= x3+x2﹣ax+3a在区间[1,2]上单调递增,则实数a的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数处取得极大值,则实数的取值范围是_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=
(1)证明函数f(x)在(﹣1,+∞)上为单调递增函数;
(2)若x∈[0,2],求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= x2﹣ax+(3﹣a)lnx,a∈R.
(1)若曲线y=f(x)在点(1,f(1))处的切线与直线2x﹣y+1=0垂直,求a的值;
(2)设f(x)有两个极值点x1 , x2 , 且x1<x2 , 求证:﹣5﹣f(x1)<f(x2)<﹣

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,抛物线 ,直线与抛物线交于 两点.

(1)若直线 的斜率之积为,证明:直线过定点;

(2)若线段的中点在曲线 上,求的最大值.

查看答案和解析>>

同步练习册答案