精英家教网 > 高中数学 > 题目详情

【题目】如图,郊外有一边长为200m的菱形池塘ABCD,塘边ABAD的夹角为60°,拟架设三条网隔BE,BF,EF,把池塘分成几个不同区域,其中网隔BEBF相互垂直,E,F两点分别在塘边ADDC区域BEF为荷花种植区域记∠ABE=,荷花种植区域的面积为Sm2

(1)S关于的函数关系式

(2)S的最小值

【答案】(1)(2).

【解析】

(1)根据正弦定理,即可求出函数的关系式;(2)根据三角函数的性质即可求出.

(1)由正弦定理可得=,即=

=,即=

∴BE=,BF=

∴S=,(0≤θ≤);

(2)令f(θ)=cos2θ+sinθcosθ=+sin2θ=sin(2θ+)+

当2θ+=,即θ=时,f(θ)有最大值为+1,

此时S有最小值为120000﹣60000

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某二手车直卖网站对其所经营的一款品牌汽车的使用年数x与销售价格y(单位:万元,辆)进行了记录整理,得到如下数据:

(I)画散点图可以看出,zx有很强的线性相关关系,请求出zx的线性回归方程(回归系数精确到0.01);

(II)y关于x的回归方程,并预测某辆该款汽车当使用年数为10年时售价约为多少.

参考公式:

参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业生产某种产品,为了提高生产效益,通过引进先进的生产技术和管理方式进行改革,并对改革后该产品的产量x(万件)与原材料消耗量y(吨)及100件产品中合格品与不合格品数量作了记录,以便和改革前作对照分析,以下是记录的数据:

表一:改革后产品的产量和相应的原材料消耗量

x

3

4

5

6

y

2.5

3

4

4.5

表二:改革前后定期抽查产品的合格数与不合格数

合格品的数量

不合格品的数量

合计

改革前

90

10

100

改革后

85

15

100

合计

175

25

200

(1)请根据表一提供数据,用最小二乘法求出y关于x的线性回归方程.

(2)已知改革前生产7万件产品需要6.5吨原材料,根据回归方程预测生产7万件产品能够节省多少原材料?

(3)请根据表二提供的数据,判断是否有90%的把握认为“改革前后生产的产品的合格率有差异”?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知正三棱柱的高为3,底面边长为,点分别为棱的中点.

1)求证:直线平面

2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,若函数6个不同的零点,则实数m的取值范围是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xoy中,以坐标原点O为极点,x轴正半轴为极轴建立极坐标系。已知曲线C的极坐标方程为,过点的直线l的参数方程为(为参数),直线l与曲线C交于MN两点。

(1)写出直线l的普通方程和曲线C的直角坐标方程:

(2)若成等比数列,求a的值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在棱长为1的正方体中,点分别是棱的中点,是侧面内一点,若平面,则线段长度的取值范围是( )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知fx)是定义在R上的奇函数,且当x≥0时,fx)=x2,对任意的x∈[tt+2]不等式fx+t)≥2fx)恒成立,那么实数t的取值范围是(  )

A. [,+∞) B. [2,+∞) C. (0,] D. [0,]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一只红蚂蚁与一只黑蚂蚁在一个单位圆(半径为1的圆)上爬动,若两只蚂蚁均从点A10)同时逆时针匀速爬动,若红蚂蚁每秒爬过α角,黑蚂蚁每秒爬过β角(其中αβ180°),如果两只蚂蚁都在第14秒时回到A点,并且在第2秒时均位于第二象限,求αβ的值.

查看答案和解析>>

同步练习册答案