精英家教网 > 高中数学 > 题目详情

【题目】已知函数为函数的导函数.

1)若函数的最小值为0,求实数的值;

2)若恒成立,求实数的取值范围.

【答案】1;(2.

【解析】

1)令,当时根据导数判断函数单调递增不符合题意,当时利用导数判断函数单调性从而求出最小值,根据最小值为0列出方程求解即可;(2)不等式化简为,则对任意恒成立,令,利用导数求出函数的最小值,根据不等式恒成立的条件即可求得a的值.

1

所以

①当时,,所以上单调递增,不合题意;

②当时,时,时,

所以函数在区间上单调递减,在区间上单调递增,

,令,则

因为

所以在区间上单调递增,在区间上单调递减,

所以,所以由,解得

即实数的值为.

2)因为恒成立,所以

对任意恒成立,

,则

由(1)知,,当且仅当时,等号成立,

时,,函数单调递减;当时,,函数单调递增,

所以 ,所以,即.

所以实数的取值范围为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知是曲线上的动点,将绕点顺时针旋转得到,设点的轨迹为曲线.以坐标原点为极点,轴的正半轴为极轴建立极坐标系.

1)求曲线的极坐标方程;

2)在极坐标系中,点,射线与曲线分别相交于异于极点两点,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱锥中,平面平面,且

是等边三角形, .

(1)证明: 平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中, 平面 .

1)证明

2)求二面角的余弦值;

3)设点为线段上一点,且直线平面所成角的正弦值为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)当时,求的最小值;

2)若函数上存在极值点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019121日起郑州市施行《郑州市城市生活垃圾分类管理办法》,郑州将正式进入城市生活垃圾分类时代.为了增强社区居民对垃圾分类知识的了解,积极参与到垃圾分类的行动中,某社区采用线下和线上相结合的方式开展了一次200名辖区成员参加的垃圾分类有关知识专题培训.为了了解参训成员对于线上培训、线下培训的满意程度,社区居委会随机选取了40名辖区成员,将他们分成两组,每组20人,分别对线上、线下两种培训进行满意度测评,根据辖区成员的评分(满分100分)绘制了如图所示的茎叶图.

1)根据茎叶图判断辖区成员对于线上、线下哪种培训的满意度更高,并说明理由.

2)求这40名辖区成员满意度评分的中位数,并将评分不超过、超过分别视为基本满意”“非常满意两个等级.

)利用样本估计总体的思想,估算本次培训共有多少辖区成员对线上培训非常满意;

)根据茎叶图填写下面的列联表.

基本满意

非常满意

总计

线上培训

线下培训

总计

并根据列联表判断能否有995%的把握认为辖区成员对两种培训方式的满意度有差异?

附:

0010

0005

0001

6635

7879

10828

,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C的中心在坐标原点,焦点在x轴上,它的一个顶点恰好是抛物线的焦点,离心率为.

(Ⅰ)求椭圆C的标准方程;

(Ⅱ)过椭圆C的右焦点F作直线l交椭圆CAB两点,交y轴于M点,若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某银行推销甲、乙两种理财产品(每种产品限购30万).每一件产品根据订单金额不同划分为:订单金额不低于20万为大额订单,低于20万为普通订单.银监部门随机调取购买这两种产品的客户各100户,对他们的订单进行分析,得到如图所示的频率分布直方图:

将此样本的频率估计视为总体的概率.购买一件甲产品,若是大额订单可盈利2万元,若是普通订单则亏损1万元,购买一件乙产品,若是大额订单可盈利1.5万元,若是普通订单则亏损0.5万元.

1)记X为购买1件甲产品和1件乙产品所得的总利润,求随机变量X的数学期望;

2)假设购买4件甲产品和4件乙产品所获得的利润相等.

i)这4件甲产品和4件乙产品中各有大额订单多少件?

(ⅱ)这4件甲产品和4件乙产品中大额订单的概率哪个大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)讨论函数的单调性;

2)当时,求证:.

查看答案和解析>>

同步练习册答案