精英家教网 > 高中数学 > 题目详情

若函数f(x)=(x2-2ax)ex在[-1,1]上为单调函数,求实数a的取值范围.

解:∵x∈R,f'(x)=ex[x2+2(1-a)x-2a]
1)若f(x)在[-1,1]递减,则f'(x)≤0在[-1,1]恒成立,
∴只需x2+2(1-a)x-2a≤0在[-1,1]恒成立,
即2a(x+1)≥x2+2x在[-1,1]恒成立,
(1)x=-1时(1)式成立;x∈(-1,1]时,需满足,令g(x)=
在x∈(-1,1]恒成立,
∴g(x)在(-1,1]递增,∴,∴
2)若f(x)在[-1,1]递增,则f'(x)≥0在[-1,1]恒成立,
但f'(-1)=-1,∴f(x)在[-1,1]不递增;
综上
分析:先由f′(x)>0,再根据函数f(x)在[-1,1]上为单调函数,将原问题转化为x2+2(1-a)x-2a≤0在[-1,1]恒成立问题,列出关于a的不等关系解之即得.
点评:本小题主要考查函数单调性的应用、利用导数研究函数的单调性、不等式的解法等基础知识,考查运算求解能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=a2x2(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为
2
,求a的值;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数 fx)=a x (a>0,a≠1 ) 的部分对应值如表:

x

-2

0

fx

0.592

1

则不等  式f-1(│x│<0)的解集是        ()

A. {x│-1<x<1}                  B. {xx<-1或x>1}         

C. {x│0<x<1}                    D. {x│-1<x<0或0<x<1}

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

若函数f(x)对于任意x∈[a,b],恒有|f(x)-f(a)-数学公式(x-a)|≤T(T为常数)成立,则称函数f(x)在[a,b]上具有“T级线性逼近”.下列函数中:
①f(x)=2x+1;
②f(x)=x2
③f(x)=数学公式
④f(x)=x3
则在区间[1,2]上具有“数学公式级线性逼近”的函数的个数为


  1. A.
    1
  2. B.
    2
  3. C.
    3
  4. D.
    4

查看答案和解析>>

科目:高中数学 来源:徐州模拟 题型:解答题

设函数f(x)=a2x2(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为2
2
,求a的值;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2013年福建省宁德市高三质量检查数学试卷(理科)(解析版) 题型:选择题

若函数f(x)对于任意x∈[a,b],恒有|f(x)-f(a)-(x-a)|≤T(T为常数)成立,则称函数f(x)在[a,b]上具有“T级线性逼近”.下列函数中:
①f(x)=2x+1;
②f(x)=x2
③f(x)=
④f(x)=x3
则在区间[1,2]上具有“级线性逼近”的函数的个数为( )
A.1
B.2
C.3
D.4

查看答案和解析>>

同步练习册答案