精英家教网 > 高中数学 > 题目详情
17、数列{an}满足a1=1,an+1=(n2+n-λ)an(n=1,2,…),λ是常数.
(1)当a2=-1时,求λ及a3的值;
(2)数列{an}是否可能为等差数列?若可能,求出它的通项公式,若不可能,说明理由.
分析:(1)利用a2的值列出关于λ的方程是解决本题的关键,求出λ的值,再根据a2的值计算出a3的值;
(2)先假设数列{an}可能为等差数列,利用该数列的前3项成等差数列,得出关于λ的方程,确定出λ的值,考查数列后面的项是否满足等差数列,从而肯定或者否定假设.
解答:解:(1)由于an+1=(n2+n-λ)an(n=1,2,…),且a1=1,
所以当a2=-1时,得-1=2-λ,
故λ=3.从而a3=(22+2-3)×(-1)=-3.
(2)数列{an}不可能为等差数列,证明如下:
由a1=1,an+1=(n2+n-λ)an,得
a2=2-λ,a3=(6-λ)(2-λ),a4=(12-λ)(6-λ)(2-λ).
若存在λ,使{an}为等差数列,则a3-a2=a2-a1
即(5-λ)(2-λ)=1-λ,解得λ=3.
于是a2-a1=1-λ=-2,
a4-a3=(11-λ)(6-λ)(2-λ)=-24.
这与{an}为等差数列矛盾.
所以,对任意λ,{an}都不可能是等差数列.
点评:本题考查数列递推关系确定数列的问题,考查数列为等差数列的判定方法、探究性问题的解决思路,考查学生解决问题的方程思想、确定一个命题为假命题的方法.关键要进行问题的转化,考查学生的运算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设b>0,数列{an}满足a1=b,an=
nban-1an-1+n-1
(n≥2)
(1)求数列{an}的通项公式;
(4)证明:对于一切正整数n,2an≤bn+1+1.

查看答案和解析>>

科目:高中数学 来源: 题型:

若数列{an}满足a1=1,a2=2,an=
an-1an-2
(n≥3)
,则a17等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>0,数列{an}满足a1=a,an+1=a+
1
an
,n=1,2,….

(I)已知数列{an}极限存在且大于零,求A=
lim
n→∞
an
(将A用a表示);
(II)设bn=an-A,n=1,2,…,证明:bn+1=-
bn
A(bn+A)

(III)若|bn|≤
1
2n
对n=1,2,…
都成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}满足a1=1,an=
12
an-1+1(n≥2)

(1)若bn=an-2,求证{bn}为等比数列;    
(2)求{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}满足a1=
4
3
,an+1=an2-an+1(n∈N*),则m=
1
a1
+
1
a2
+…+
1
a2013
的整数部分是(  )

查看答案和解析>>

同步练习册答案