精英家教网 > 高中数学 > 题目详情

【题目】已知圆,直线与圆相切,且交椭圆 两点, 是椭圆的半焦距, .

(1)求的值;

(2)为坐标原点,若,求椭圆的方程;

(3)在(2)的条件下,设椭圆的左右顶点分别为 ,动点,直线 与直线分别交于 两点,求线段的长度的最小值.

【答案】(1);(2);(3).

【解析】试题分析: (1)利用直线与圆相切,根据点到直线的距离公式,可求的值;
(2)直线代入椭圆,根据,利用韦达定理,可求椭圆的方程;
(3)设直线AS的方程为,从而,,得,求出的坐标,进而可求的坐标,即可求出线段的长度的最小值.

试题解析:(1)直线与圆相切,所以 .

(2)将代入得

得:

,则

,因为

由已知 代入

所以椭圆的方程为.

(3)显然直线的斜率存在,设为

依题意,由得:

,则

,又,所以

.

.

所以时, .

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示,正方体ABCD﹣A1B1C1D1的棱长为8cm,M,N,P分别是AB,A1D1 , BB1的中点.
(1)画出过M,N,P三点的平面与平面A1B1C1D1的交线以及与平面BB1C1C的交线;
(2)设过M,N,P三点的平面与B1C1交于Q,求PQ的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某渔业公司今年年初用98万元购进一艘渔船用于捕捞,第一年需要各种费用12万元.从第二年起包括维修费在内每年所需费用比上一年增加4万元.该船每年捕捞总收入50万元.

(1)问捕捞几年后总盈利最大,最大是多少?

(2)问捕捞几年后的平均利润最大,最大是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a,b,c,d∈E,证明下列不等式:
(1)(a2+b2)(c2+d2)≥(ac+bd)2
(2)a2+b2+c2≥ab+bc+ca.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若不等式1-ax2-4x+6>0的解集是{x|-3<x<1}.

(1)解不等式2x22-ax-a>0;

(2)b为何值时,ax2+bx+30的解集为R.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中
①函数f(x)=( x的递减区间是(﹣∞,+∞)
②已知函数f(x)的定义域为(0,1),则函数f(x+1)的定义域为(1,2);
③已知(x,y)映射f下的象是(x+y,x﹣y),那么(4,2)在f下的原象是(3,1).
其中正确命题的序号为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列给出四组函数,表示同一函数的是(
A.f(x)=x,g(x)=
B.f(x)=2x+1,g(x)=2x﹣1
C.f(x)=x,g(x)=
D.f(x)=1,g(x)=x0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知:正三棱柱中, 为棱的中点.

)求证: 平面

)求证:平面平面

)求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设关于的一元二次方程

(1)若是从0,1,2,3四个数中任取的一个数, 是从0,1,2三个数中任取的一个数,求上述方程有实根的概率;

(2)若时从区间上任取的一个数, 是从区间上任取的一个数,求上述方程有实根的概率.

查看答案和解析>>

同步练习册答案