精英家教网 > 高中数学 > 题目详情
如图,正四棱柱中,,点上且
(1)证明:平面
(2)求二面角的余弦值大小.
以D为原点,分别以DA、DC、DD余弦值所在直线为x轴、y轴、z轴,建系如图所示
D(0,0,0)   A1(2,0,4)    B(2,2,0)    E(0,2,1)    C(0,2,0)
(1)        ∴A1C⊥DB    A1C⊥DE
又DBDE="D      " ∴A1C⊥平面BDE
(2)由(1)知是平面BDE的一个法向量

=(-2,2,-4)
设平面A1DE的一个法向量=(x,y,z)

练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图在棱长为1的正方体中,M,N分别是线段和BD上的点,且AM=BN=

(1)求||的最小值;
(2)当||达到最小值时,是否都垂直,如果都垂直给出证明;如果不是都垂直,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本大题12分)如图,在棱长为ɑ的正方体ABCD-A1B1C1D1中,E、F、G分别是CB、CD、CC1的中点.
(1)求直线C与平面ABCD所成角的正弦的值;
(2)求证:平面A B1D1∥平面EFG;
(3)求证:平面AA1C⊥面EFG .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,点P是正方形ABCD外一点,PA平面ABCD,PA=AB=2,且E、F分别是AB、PC的中点.
(1)求证:EF//平面PAD;
(2)求证:EF平面PCD;
(3)求:直线BD与平面EFC所成角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知ABCD是正方形,PA⊥平面ABCD,且PA=AB=2,EF是侧棱PDPC的中点。
(1)求证:平面PAB
(2)求直线PC与底面ABCD所成角的正切值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知平面的法向量,平面的法向量,若,则k的值为
A.5B.4
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥P-ABCD的底面ABCD为矩形,且PA="AD=1,AB=2," ,.
(1)求证:平面平面
(2)求三棱锥D-PAC的体积;
(3)求直线PC与平面ABCD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,直三棱柱ABC—A1B1C1,底面△ABC中,CA=CB=1,∠BCA=90°,棱AA1=2,M、N分别是A1B1,A1A的中点;

(1)求
(2)求
(3)
(4)求CB1与平面A1ABB1所成的角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在正三棱柱中,所有棱的长度都是2,边的中点,问:在侧棱上是否存在点,使得异面直线所成的角等于

查看答案和解析>>

同步练习册答案