精英家教网 > 高中数学 > 题目详情

.
(1)求的长    
(2)若点的中点,求中线的长度.

(1);(2).

解析试题分析:(1)先由,结合,利用同角三角函数的基本关系式得到,进而由三角形的内角和及两角和差公式计算出的值,接着再根据正弦定理得到,代入数据即可得到的值;(2)先由正弦定理得到,代入数据可得的值,而,在中应用余弦定理得,代入数据即可得到的长度.
试题解析:(1)因为,而,所以

由正弦定理知
(2)
由余弦定理知.
考点:1.正余弦定理;2.同角三角函数的基本关系式;3.两角和差公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(2011•山东)在△ABC中,内角A,B,C的对边分别为a,b,c.已知
(1)求的值;
(2)若cosB=,△ABC的周长为5,求b的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知△ABC外接圆半径R=1,且.
(1)求角的大小; (2)求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在△中,已知,向量,且
(1)求的值;
(2)若点在边上,且,求△的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知向量,设函数
(1)求函数的单调递增区间;
(2)在中,角的对边分别为,且满足,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知的三内角,且其对边分别为,若
(1)求
(2)若,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

的三内角所对的边长分别为,且,A=
(1)求三角形ABC的面积;
(2)求的值及中内角B,C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知甲船正在大海上航行,当它位于A处时获悉,在其正东方向相距20海里的B处有一艘渔船遇险等待营救,甲船立即以10海里/小时的速度匀速前往救援,同时把消息告知在甲船的南偏西,相距10海里C处的乙船,乙船当即决定匀速前往救援,并且与甲船同时到达。(供参考使用:).
(1)试问乙船航行速度的大小;
(2)试问乙船航行的方向(试用方位角表示,如北偏东…度).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

ABC中,sin(C-A)=1,sinB=.
(1)求sinA的值;
(2)设AC=,求ABC的面积.

查看答案和解析>>

同步练习册答案