精英家教网 > 高中数学 > 题目详情
8.(Ⅰ)已知${(\sqrt{x}+\frac{1}{{3{x^2}}})^n}$的第五项的二项式系数与第三项的二项式系数的比是14:3,求展开式中不含x的项;
(Ⅱ)求(1+x)2(1-x)5展开式中x3的系数.

分析 (Ⅰ)依题意有Cn4:Cn2=14:3.化简求得n=10.在通项公式中,令x的幂指数等于零,求得r的值,可得不含x的项.
(Ⅱ)把(1+x)2(1-x)5 按照二项式定理展开,可得x3的系数.

解答 解:(Ⅰ)依题意有Cn4:Cn2=14:3.化简得(n-2)(n-3)=56,
解之得n=10或n=-5(不合题意,舍去). 
设该展开式中第r+1项为所求的项,则由通项公式可得Tr+1=${C}_{10}^{r}$•${(\frac{1}{3})}^{r}$•${x}^{\frac{10-5r}{2}}$,
令$\frac{10-5r}{2}$=0,求得r=2,可得不含x的项为第三项,且T3=C102•3-2=5.
(Ⅱ)∵(1+x)2(1-x)5 =(1+2x+x2)(1-C51x+C52x2-C53x3+C54x4-x5),
∴x3的系数为:-C53+2C52-C51=5.

点评 本题主要考查二项式定理的应用,二项式展开式的通项公式,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.双曲线$\frac{x^2}{7}-\frac{y^2}{9}=1$的焦点坐标为(  )
A.$({0,±\sqrt{2}})$B.$({±\sqrt{2},0})$C.(0,±4)D.(±4,0)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知sinα=$\frac{{\sqrt{5}}}{5}$,sinβ=$\frac{{\sqrt{10}}}{10}$,且α,β均为锐角,则α+β的值为(  )
A.$\frac{π}{4}$B.$\frac{3π}{4}$C.$\frac{π}{4}$或$\frac{3π}{4}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知命题p:抛物线y=$\frac{1}{4}$x2的焦点F在椭圆$\frac{{x}^{2}}{2}$+$\frac{{y}^{2}}{b}$=1上.命题q:直线l经过抛物线y=$\frac{1}{4}$x2的焦点F,且直线l过椭圆$\frac{{x}^{2}}{2}$+$\frac{{y}^{2}}{b}$=1的左焦点F1.p∧q是真命题.
(Ⅰ)求直线l的方程;
(Ⅱ)直线l与抛物线相交于A、B,直线l1、l2分别切抛物线于A、B,求l1、l2的交点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.如图,已知l1∥l2,AF:FB=2:5,BC:CD=4:1,则$\frac{AE}{EC}$=(  ) 
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数f(x)=$\left\{\begin{array}{l}{(2x-{x}^{2}){e}^{x},x≤0}\\{-{x}^{2}+4x+3,x>0}\end{array}\right.$,g(x)=f(x)-3k,若函数g(x)恰有两个不同的零点,则实数k的取值范围为(1,$\frac{7}{3}$)∪{0,$-\frac{2\sqrt{2}+2}{3{e}^{\sqrt{2}}}$}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知点A(2,-3),B(-3,-2),直线l方程为kx+y-k-1=0,且与线段AB相交,求直线l的斜率k的取值范围为(  )
A.k≥$\frac{3}{4}$或k≤-4B.k≥$\frac{3}{4}或k≤-\frac{1}{4}$C.-4≤k≤$\frac{3}{4}$D.$\frac{3}{4}$≤k≤4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.等差数列{an}中,若a2=1,a6=13,则公差d=(  )
A.3B.6C.7D.10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图△ABC内接于圆O,AB=AC,直线MN切圆O于点C,弦BD∥MN,AC与BD相交于点E.
(Ⅰ)求证:△ABE≌△ACD;
(Ⅱ)若AB=6,BC=4,求$\frac{DE}{AE}$的值.

查看答案和解析>>

同步练习册答案