精英家教网 > 高中数学 > 题目详情
9.在四棱锥P-ABCD中:ABCD是正方形,PA⊥平面ABCD,PA=AB=a.
(1)求二面角P-CD-A的大小;
(2)求四棱锥P-ABCD的全面积;
(3)求C点到平面PBD的距离.

分析 (1)找出二面角P-CD-A的平面角并求出大小;
(2)计算四棱锥P-ABCD各个面的面积再求和;
(3)利用等体积法即可求出C点到平面PBD的距离.

解答 解:(1)因为ABCD是正方形,PA⊥底面ABCD,所以PA⊥CD;
又CD⊥AD,所以CD⊥平面PAD,
所以PD⊥CD,AD⊥CD,
所以∠PDA为二面角P-CD-A的平面角,
又PA=AD=a,所以∠PDA=45°,
即二面角P-CD-A的大小为45°;
(2)由(1)得,CD⊥平面PAD,
所以CD⊥PD,△PCD是直角三角形;
因为PA=AB=a,所以S△PCD=$\frac{1}{2}$•a•$\sqrt{2}$a=$\frac{\sqrt{2}}{2}$a2
同理CB⊥PB,即S△BCP=$\frac{\sqrt{2}}{2}$a2
因为PA⊥面ABCD,底面ABCD为正方形,
所以S△ABP=S△ADP=$\frac{1}{2}$•a•a=$\frac{1}{2}$a2
S底面ABCD=a2
所以四棱锥P-ABCD的全面积为
S=$\frac{\sqrt{2}}{2}$a2+$\frac{\sqrt{2}}{2}$a2+$\frac{1}{2}$a2+$\frac{1}{2}$a2+a2=($\sqrt{2}$+2)a2
(3)设C点到平面PBD的距离为h,
则△PBC是边长为$\sqrt{2}$a的正三角形,其面积为$\frac{\sqrt{3}}{4}$•${(\sqrt{2}a)}^{2}$=$\frac{\sqrt{3}}{2}$a2
所以三棱锥P-BDC的体积是
V三棱锥P-BDC=$\frac{1}{3}$×$\frac{1}{2}$a2×a=$\frac{1}{3}$×$\frac{\sqrt{3}}{2}$a2•h,
解得h=$\frac{\sqrt{3}}{3}$a,
即C点到平面PBD的距离为$\frac{\sqrt{3}}{3}$a.

点评 本题考查了三棱锥中线面角以及面面角的求法以及点到平面距离的计算问题,考查了空间想象能力与转化思想的应用问题,是综合性题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.在△ABC中,a、b、c分别是角A、B、C的对边,且$\frac{cosB}{cosC}=\frac{b}{2a-c}$.
(1)求角B的大小;
(2)若b=$\sqrt{7}$,且△ABC的面积为$\frac{3\sqrt{3}}{2}$,求a+c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.两圆x2+y2=9和x2+y2-8x+6y+9=0的公切线条数是(  )
A.1条B.2条C.3条D.4条

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.△ABC的面积为S,α是三角形的内角,O是平面ABC内一点,且满足$\sqrt{2}$$\overrightarrow{OA}$+sinα$\overrightarrow{OB}$+cosα$\overrightarrow{OC}$=$\overrightarrow{0}$,则下列判断正确的是(  )
A.S△AOC的最小值为$\frac{1}{2}$SB.SAOB的最小值为($\sqrt{2}$-1)S
C.S△AOC+S△AOB的最大值为$\frac{1}{2}$SD.S△BOC的最大值为($\sqrt{2}$-1)S

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图所示数阵,记an为数字n的个数,记An为an个数字n的和.已知数列{bn}满足bn=$\frac{1}{{A}_{n}+5n}$,Bn为数列{bn}的前n项和,且Bn<t恒成立.
(1)an=2n-1;An=2n2-n;
(2)已知椭圆C的标准方程为:$\frac{{x}^{2}}{2{t}^{2}}$+$\frac{{y}^{2}}{{t}^{2}}$=1(t>0).P为C的下顶点,过点P的直线l斜率为t.直线l过定点M,且与C交于另一点N.若PN的中点为E,求$\frac{EP}{MP}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,长方体ABCD-A1B1C1D1的底面边长均为1,侧棱AA1=2,M,N分别是A1C1,A1A的中点,
(1)求$\overrightarrow{CN}$的长;
(2)求cos<$\overrightarrow{C{A}_{1}}$,$\overrightarrow{D{C}_{1}}$>的值;
(3)求证:A1C⊥D1M.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设函数f(x)=x•1nx,g(x)=ax2-2ax+1.
(1)求函数f(x)的单调区间;
(2)若x∈[1,2],a∈[1,2],求证:f(x)≥g(x).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.关于正切函数的单调性,给出下列命题:
①正切函数y=tanx是增函数;
②正切函数y=tanx在其定义域上是增函数;
③正切函数y=tanx在每一个开区间(-$\frac{π}{2}$+kπ、$\frac{π}{2}$+kπ)(k∈z)内都是增函数;
④正切函数y=tanx在区间(0,$\frac{π}{2}$)∪($\frac{π}{2}$,π)上是增函数.
其中.真命题是③.(填所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设$\overrightarrow{{e}_{1}}$、$\overrightarrow{{e}_{2}}$是不共线的两个向量,给出下列四组向量:①$\overrightarrow{{e}_{1}}$与$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$;②$\overrightarrow{{e}_{1}}$-2$\overrightarrow{{e}_{2}}$与$\overrightarrow{{e}_{2}}$-2$\overrightarrow{{e}_{1}}$;③$\overrightarrow{{e}_{1}}$-2$\overrightarrow{{e}_{2}}$与4$\overrightarrow{{e}_{2}}$-2$\overrightarrow{{e}_{1}}$.其中能作为平面内所有向量的一组基底的序号是①②.

查看答案和解析>>

同步练习册答案