精英家教网 > 高中数学 > 题目详情

【题目】在某次测验中,有6位同学的平均成绩为75分.用xn表示编号为n(n=1,2,…,6)的同学所得成绩,且前5位同学同学的成绩如表:

n

1

2

3

4

5

x0

70

76

72

70

72


(1)求第6位同学的成绩x6及这6位同学成绩的标准差s;
(2)若从前5位同学中,随机地选2位同学,求恰有1位同学成绩在区间[68,75)中的概率.

【答案】
(1)解:由题意知,

第6位同学的成绩x6=75×6﹣70﹣76﹣72﹣70﹣72=90.

S2= [(70﹣75)2+(76﹣75)2+(72﹣75)2+(70﹣75)2+(72﹣75)2+(90﹣75)2]=49,

∴S= =7.


(2)解:试验发生包含的事件是从5位同学中选2个,共有C52=10种结果,

满足条件的事件是恰有一位成绩在区间(68,75)中,共有C41=4种结果,

根据古典概型概率个数得到P= =0.4.


【解析】(1)第6位同学的成绩x6=75×6﹣70﹣76﹣72﹣70﹣72=90;先求出S2 , 再求S.(2)利用等可能事件概率计算公式能求出恰有1位同学成绩在区间[68,75)中的概率.
【考点精析】认真审题,首先需要了解平均数、中位数、众数(⑴平均数、众数和中位数都是描述一组数据集中趋势的量;⑵平均数、众数和中位数都有单位;⑶平均数反映一组数据的平均水平,与这组数据中的每个数都有关系,所以最为重要,应用最广;⑷中位数不受个别偏大或偏小数据的影响;⑸众数与各组数据出现的频数有关,不受个别数据的影响,有时是我们最为关心的数据),还要掌握极差、方差与标准差(标准差和方差越大,数据的离散程度越大;标准差和方程为0时,样本各数据全相等,数据没有离散性;方差与原始数据单位不同,解决实际问题时,多采用标准差)的相关知识才是答题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数f(x)=x2+2ax﹣b2+4
(1)若a是从0,1,2三个数中任取的一个数,b是从﹣2,﹣1,0,1,2五个数中任取的一个数,求函数f(x)有零点的概率;
(2)若a是从区间[﹣3,3]上任取的一个数,b是从区间[0,3]上任取的一个数,求函数g(x)=f(x)+5无零点的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sin(ωx+φ)+1(0≤φ≤ )的图象相邻两对称轴之间的距离为π,且在x= 时取得最大值2.
(1)求函数f(x)的解析式;
(2)求函数f(x)的单调递增区间;
(3)当f(α)= ,且 <α< ,求sinα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{}中, ,且对任意正整数都成立,数列{}的前n项和为Sn

1)若,且,求a

2)是否存在实数k,使数列{}是公比不为1的等比数列,且任意相邻三项按某顺序排列后成等差数列,若存在,求出所有k值,若不存在,请说明理由;

3)若

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂对一批产品的质量进行了抽样检测,右图是根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图.已知样本中产品净重在[70,75)克的个数是8个.
(Ⅰ)求样本容量;
(Ⅱ)若从净重在[60,70)克的产品中任意抽取2个,求抽出的2个产品恰好是净重在[65,70)的产品的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=alnx+ ,曲线f(x)在点(1,f(1))处的切线平行于x轴.
(1)求f(x)的最小值;
(2)比较f(x)与 的大小;
(3)证明:x>0时,xexlnx+ex>x3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=x3+3x2﹣mx+1在[﹣2,2]上为单调增函数,则实数m的取值范围为(
A.m≤﹣3
B.m≤0
C.m≥﹣24
D.m≥﹣1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△ABC内一点O满足 = ,若△ABC内任意投一个点,则该点△OAC内的概率为( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分10分)选修4-4:坐标系与参数方程

已知直线的极坐标方程为,圆的参数方程为

(其中为参数).

)将直线的极坐标方程化为直角坐标方程;

)求圆上的点到直线的距离的最小值.

查看答案和解析>>

同步练习册答案