【题目】设 .
(1)若直线与和和图象均相切,求直线的方程;
(2)是否存在使得按某种顺序组成等差数列?若存在,这样的有几个?若不存在,请说明理由.
【答案】(1)(2)存在,有且只有一个.
【解析】试题分析:(1)设切线为,代入中化简得,则,设切点,则切线为: ,然后可求出,进而求出直线的方程;(2)由(1)可知, 与的图象分居直线的上下两侧,则,故而,结合题设条件,构造,由导数得出的单调性,进而可得出结论.
试题解析:(1)设切线为,代入中化简得,则
设与的切点为,则切线为:
整理得
∴,
∴
∴,则,
∴直线的方程为
(2)由(1)可知, 与的图象分居直线的上下两侧,则
∴
假设存在,使得按某种顺序组成等差数列,则必有, , 成等差数列,即
设,则
∴在上单调递增
∵,
∴有且仅有一个,使得成立
∴存在,使得按某种顺序组成等差数列,并且这样的有且仅有1个
科目:高中数学 来源: 题型:
【题目】(2017·成都高中毕业第一次诊断)已知双曲线 (a>0,b>0)的左、右焦点分别为F1,F2,双曲线上一点P满足PF2⊥x轴.若|F1F2|=12,|PF2|=5,则该双曲线的离心率为( )
A. B. C. D. 3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】博鳌亚洲论坛2015年会员大会于3月27日在海南博鳌举办,大会组织者对招募的100名服务志愿者培训后,组织一次 知识竞赛,将所得成绩制成如右频率分布直方图(假定每个分数段内的成绩均匀分布),组织者计划对成绩前20名的参赛者进行奖励.
(1)试确定受奖励的分数线;
(2)从受奖励的20人中利用分层抽样抽取5人,再从抽取的5人中抽取2人在主会场服务,试求2人成绩都在90分以上的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某项竞赛分为初赛、复赛、决赛三个阶段进行,每个阶段选手要回答一个问题.规定正确回答问题者进入下一阶段竞赛,否则即遭淘汰.已知某选手通过初赛、复赛、决赛的概率分别是且各阶段通过与否相互独立.
(1)求该选手在复赛阶段被淘汰的概率;
(2)设该选手在竞赛中回答问题的个数为ξ,求ξ的分布列与均值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数,其中.
(1)试讨论函数的单调性;
(2)已知当 (其中是自然对数的底数)时,在上至少存在一点,使成立,求的取值范围;
(3)求证:当时,对任意,有.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】
近年来,随着双十一、双十二等网络活动的风靡,各大网商都想出了一系列的降价方案,以此来提高自己的产品利润. 已知在2016年双十一某网商的活动中,某店家采取了两种优惠方案以供选择:
方案一:购物满400元以上的,超出400元的部分只需支出超出部分的x%;
方案二:购物满400元以上的,可以参加电子抽奖活动,即从1,2,3,4,5,6这6张卡牌中任取2张,将得到的数字相加,所得结果与享受优惠如下:
数字和 | [3,4] | [5,7] | [8,9] | [10,11] |
实际付款 | 原价 | 9折 | 8折 | 5折 |
(Ⅰ)若某顾客消费了800元,且选择方案二,求该顾客只需支付640元的概率;
(Ⅱ)若某顾客购物金额为500元,她选择了方案二后,得到的数字之和为6,此时她发现使用方案一、二最后支付的金额相同,求x的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com