精英家教网 > 高中数学 > 题目详情

【题目】某商场在促销期间规定:商场内所有商品按标价的出售,当顾客在商场内消费一定金额后,按如下方案获得相应金额的奖券:

消费金额(元)的范围

获得奖券的金额(元)

30

60

100

130

根据上述促销方法,顾客在该商场购物可以获得双重优惠,例如:购买标价为400元的商品,则消费金额为320元,获得的优惠额为:元,设购买商品得到的优惠率=(购买商品获得的优惠额)/(商品标价),试问:

1)若购买一件标价为1000元的商品,顾客得到的优惠率是多少?

2)对于标价在(元)内的商品,顾客购买标价为多少元的商品,可得到不小于的优惠率?

【答案】1;(2.

【解析】

本题考查的是不等式的应用问题.在解答时:

1)直接根据购买商品得到的优惠率,即可获得问题的解答;

2)由于标价在(元内的商品,其消费金额满足:,所以要结合消费金额(元的范围进行讨论,然后解不等式组即可获得问题的解答.

1)由题意可知:

故购买一件标价为1000元的商品,顾客得到的优惠率是

2)设商品的标价为元.

,消费额:

由已知得(Ⅰ)或 (Ⅱ)

不等式组(Ⅰ)无解,不等式组(Ⅱ)的解为

因此,当顾客购买标价在元内的商品时,

可得到不小于的优惠率.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在各棱长均为2的正三棱柱中, 分别为棱的中点, 为线段上的动点,其中, 更靠近,且.

(1)证明: 平面

(2)若与平面所成角的正弦值为,求异面直线所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以三角形边为边向形外作正三角形,则三线共点,该点称为的正等角中心.当的每个内角都小于120时,正等角中心点P满足以下性质:

1;(2)正等角中心是到该三角形三个顶点距离之和最小的点(也即费马点).由以上性质得的最小值为_________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线的极坐标方程是.以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立平面直角坐标系,直线的参数方程是为参数).

(Ⅰ)将曲线的极坐标方程化为直角坐标方程;

(Ⅱ)若直线与曲线相交于两点,且,求直线的倾斜角的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点是直线上一动点,PA、PB是圆的两条切线,A、B为切点,若四边形PACB面积的最小值是2,则的值是

A. B. C. 2 D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某群体的人均通勤时间,是指单日内该群体中成员从居住地到工作地的平均用时.某地上班族中的成员仅以自驾或公交方式通勤.分析显示:当)的成员自驾时,自驾群体的人均通勤时间为(单位:分钟),而公交群体的人均通勤时间不受影响,恒为分钟,试根据上述分析结果回答下列问题:

(1)当在什么范围内时,公交群体的人均通勤时间少于自驾群体的人均通勤时间?

(2)求该地上班族的人均通勤时间的表达式;讨论的单调性,并说明其实际意义.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过抛物线焦点的直线与抛物线交于两点,与圆交于两点,若有三条直线满足,则的取值范围为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)是定义在R上的偶函数,且当x≥0时,fx)=x22x

1)求f0)及ff1))的值;

2)求函数fx)的解析式;

3)若关于x的方程fx)﹣m0有四个不同的实数解,求实数m的取值范围,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,有一个长方体形状的敞口玻璃容器,底面是边长为20cm的正方形,高为30cm,内有20cm深的溶液.现将此容器倾斜一定角度(图),且倾斜时底面的一条棱始终在桌面上(图均为容器的纵截面).

1)要使倾斜后容器内的溶液不会溢出,角的最大值是多少?

2)现需要倒出不少于的溶液,当时,能实现要求吗?请说明理由.

查看答案和解析>>

同步练习册答案