【题目】某商场在促销期间规定:商场内所有商品按标价的出售,当顾客在商场内消费一定金额后,按如下方案获得相应金额的奖券:
消费金额(元)的范围 | … | ||||
获得奖券的金额(元) | 30 | 60 | 100 | 130 | … |
根据上述促销方法,顾客在该商场购物可以获得双重优惠,例如:购买标价为400元的商品,则消费金额为320元,获得的优惠额为:元,设购买商品得到的优惠率=(购买商品获得的优惠额)/(商品标价),试问:
(1)若购买一件标价为1000元的商品,顾客得到的优惠率是多少?
(2)对于标价在(元)内的商品,顾客购买标价为多少元的商品,可得到不小于的优惠率?
科目:高中数学 来源: 题型:
【题目】如图,在各棱长均为2的正三棱柱中, 分别为棱与的中点, 为线段上的动点,其中, 更靠近,且.
(1)证明: 平面;
(2)若与平面所成角的正弦值为,求异面直线与所成角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】以三角形边,,为边向形外作正三角形,,,则,,三线共点,该点称为的正等角中心.当的每个内角都小于120时,正等角中心点P满足以下性质:
(1);(2)正等角中心是到该三角形三个顶点距离之和最小的点(也即费马点).由以上性质得的最小值为_________
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线的极坐标方程是.以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立平面直角坐标系,直线的参数方程是(为参数).
(Ⅰ)将曲线的极坐标方程化为直角坐标方程;
(Ⅱ)若直线与曲线相交于,两点,且,求直线的倾斜角的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某群体的人均通勤时间,是指单日内该群体中成员从居住地到工作地的平均用时.某地上班族中的成员仅以自驾或公交方式通勤.分析显示:当中()的成员自驾时,自驾群体的人均通勤时间为(单位:分钟),而公交群体的人均通勤时间不受影响,恒为分钟,试根据上述分析结果回答下列问题:
(1)当在什么范围内时,公交群体的人均通勤时间少于自驾群体的人均通勤时间?
(2)求该地上班族的人均通勤时间的表达式;讨论的单调性,并说明其实际意义.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)是定义在R上的偶函数,且当x≥0时,f(x)=x2﹣2x.
(1)求f(0)及f(f(1))的值;
(2)求函数f(x)的解析式;
(3)若关于x的方程f(x)﹣m=0有四个不同的实数解,求实数m的取值范围,
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图①,有一个长方体形状的敞口玻璃容器,底面是边长为20cm的正方形,高为30cm,内有20cm深的溶液.现将此容器倾斜一定角度(图②),且倾斜时底面的一条棱始终在桌面上(图①、②均为容器的纵截面).
(1)要使倾斜后容器内的溶液不会溢出,角的最大值是多少?
(2)现需要倒出不少于的溶液,当时,能实现要求吗?请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com