精英家教网 > 高中数学 > 题目详情

【题目】n是一个正整数,定义n个实数a1a2an的算术平均值为.设集合 M={1232015},对 M的任一非空子集 Z,令αz表示 Z中最大数与最小数之和,那么所有这样的αz的算术平均值为______.

【答案】2016

【解析】

分别讨论122015为最小值和最大值的集合的个数,再运用等比数列的求和公式求和,最后由集合的非空子集的个数和均值的定义,计算即可得到所求值.

1为最小值的集合有22014个,以2为最小值的集合有22013个,

2015为最小值的有20个,

则所有M的非空子集的最小值的和为1×22014+2×22013+…+2015×20

同理,所有M的非空子集的最大值的和为2015×22014+2014×22013+…+1×20.

故所有这样的的和为2016×22014+22013+…+20=2016×=2016×220151.

则所有这样的的算术平均值为=2016.

故答案为:2016.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】,函数的最小值为.

1)求的解析式

2)画出函数的大致图形

3)求函数的最值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中国古代儒家要求学生掌握六种基本才艺:礼、乐、射、御、书、数,简称“六艺”,某中学为弘扬“六艺”的传统文化,分别进行了主题为“礼、乐、射、御、书、数”六场传统文化知识的竞赛,现有甲、乙、丙三位选手进入了前三名的最后角逐、规定:每场知识竞赛前三名的得分都分别为,且);选手最后得分为各场得分之和,在六场比赛后,已知甲最后得分为26分,乙和丙最后得分都为11分,且乙在其中一场比赛中获得第一名,则下列推理正确的是( )

A. 每场比赛第一名得分为4 B. 甲可能有一场比赛获得第二名

C. 乙有四场比赛获得第三名 D. 丙可能有一场比赛获得第一名

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中国南北朝时期的著作《孙子算经》中,对同余除法有较深的研究.设

为整数,若除得的余数相同,则称对模同余,记为,则的值可以是

A. 2015 B. 2016 C. 2017 D. 2018

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,曲线的参数方程为为参数),以原点为极点,轴的非负半轴为极轴建立极坐标系,曲线的极坐标方程为

(1)写出曲线的极坐标方程和曲线的直角坐标方程;

(2)已知点是曲线上一点,点是曲线上一点,的最小值为,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018年双11当天,某购物平台的销售业绩高达2135亿人民币.与此同时,相关管理部门推出了针对电商的商品和服务的评价体系,现从评价系统中选出200次成功交易,并对其评价进行统计,对商品的好评率为0.9,对服务的好评率为0.75,其中对商品和服务都做出好评的交易为140次.

(1)请完成下表,并判断是否可以在犯错误概率不超过0.5%的前提下,认为商品好评与服务好评有关?

对服务好评

对服务不满意

合计

对商品好评

140

对商品不满意

10

合计

200

(2)若将频率视为概率,某人在该购物平台上进行的3次购物中,设对商品和服务全好评的次数为X.

①求随机变量X的分布列;

②求X的数学期望和方差.

附:,其中n=a+b+c+d.

P(K2≥k)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】称正整数集合 A={a1a2an}1≤a1a2ann≥2)具有性质 P:如果对任意的ij1≤ijn),两数中至少有一个属于A.

1)分别判断集合{136}{13412}是否具有性质 P

2)设正整数集合 A={a1a2an}1≤a1a2ann≥2)具有性质 P.证明:对任意1≤iniN*),ai都是an的因数;

3)求an=30n的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆

1)求过点且与圆相切的直线方程.

2)若为圆上的任意一点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着电商的快速发展,快递业突飞猛进,到目前,中国拥有世界上最大的快递市场.某快递公司收取快递费用的标准是:重量不超过的包裹收费10元;重量超过的包裹,除收费10元之外,每超过(不足,按计算)需再收5元.

该公司将最近承揽的100件包裹的重量统计如下:

包裹重量(单位:

1

2

3

4

5

包裹件数

43

30

15

8

4

公司对近60天,每天揽件数量统计如下表:

包裹件数范围

0~100

101~200

201~300

301~400

401~500

包裹件数(近似处理)

50

150

250

350

450

天数

6

6

30

12

6

以上数据已做近似处理,并将频率视为概率.

(1)计算该公司未来5天内恰有2天揽件数在101~300之间的概率;

(2)①估计该公司对每件包裹收取的快递费的平均值;

②根据以往的经验,公司将快递费的三分之一作为前台工作人员的工资和公司利润,剩余的用作其他费用.目前前台有工作人员3人,每人每件揽件不超过150件,日工资100元.公司正在考虑是否将前台工作人员裁减1人,试计算裁员前后公司每日利润的数学期望,若你是公司老总,是否进行裁减工作人员1人?

查看答案和解析>>

同步练习册答案