精英家教网 > 高中数学 > 题目详情

已知函数
(1)若曲线在点处的切线的倾斜角为,求实数的值;
(2)若函数在区间上单调递增,求实数实数的范围.

解:(1)
则可得:
(2)由函数在区间上单调递增
对一切的恒成立
恒成立,令
时取=,所以

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(12分)已知函数.
(Ⅰ)若,求曲线处切线的斜率;
(Ⅱ)求的单调区间;
(Ⅲ)设,若对任意,均存在,使得 ,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知x = 4是函数的一个极值点,(b∈R).
(Ⅰ)求的值;          
(Ⅱ)求函数的单调区间;
(Ⅲ)若函数有3个不同的零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(I)求的单调区间;
(II)若对于所有的成立,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
知二次函数的图象经过点与点,设函数
处取到极值,其中
(1)求的二次项系数的值;
(2)比较的大小(要求按从小到大排列);
(3)若,且过原点存在两条互相垂直的直线与曲线均相切,求

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数(13分)
(1)若上的最大值
(2)若在区间[1,2]上为减函数,求a的取值范围。
(3)若直线为函数的图象的一条切线,求a的值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
设函数的单调减区间是(1,2)
⑴求的解析式;
⑵若对任意的,关于的不等式
时有解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分13分)
函数
(1)求证函数在区间上存在唯一的极值点,并用二分法求函数取得极值时相应的近似值(误差不超过);(参考数据
(2)当时,若关于的不等式恒成立,试求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)若函数.
(1)求函数f(x)的单调递增区间。
(2)求在区间[-3,4]上的值域

查看答案和解析>>

同步练习册答案