精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥中P﹣ABCD,底面ABCD为边长为 的正方形,PA⊥BD.

(1)求证:PB=PD;
(2)若E,F分别为PC,AB的中点,EF⊥平面PCD,求直线PB与平面PCD所成角的大小.

【答案】
(1)解:连接AC,BD交于点O,连结PO.

∵底面ABCD是正方形,

∴AC⊥BD,OB=OD.

又PA⊥BD,PA平面PAC,AC平面PAC,PA∩AC=A,

∴BD⊥平面PAC,∵PO平面PAC,

∴BD⊥PO.

又OB=OD,

∴PB=PD


(2)解:设PD的中点为Q,连接AQ,EQ,

则EQ∥CD,EQ= CD,又AF∥CD,AF= =

∴EQ∥AF,EQ=AF,

∴四边形AQEF为平行四边形,∴EF∥AQ,

∵EF⊥平面PCD,∴AQ⊥平面PCD,

∴AQ⊥PD,∵Q是PD的中点,

∴AP=AD=

∵AQ⊥平面PCD,∴AQ⊥CD,

又AD⊥CD,AQ∩AD=A,

∴CD⊥平面PAD,∴CD⊥PA.

又BD⊥PA,BD∩CD=D,

∴PA⊥平面ABCD.

以A为坐标原点,以AB,AD,AP为坐标轴建立如图所示的空间直角坐标系,

则B( ,0,0),P(0,0, ),A(0,0,0),Q(0, ).

=(0, ), =( ,0,﹣ ).

∵AQ⊥平面PCD,∴ 为平面PCD的一个法向量.

∴cos< >= =﹣

设直线PB与平面PCD所成角为θ,

则sinθ=|cos< >|=

∴直线PB与平面PCD所成角为


【解析】(1)连接AC,BD交于点O,连结PO,则AC⊥BD,结合PA⊥BD得出BD⊥平面PAC,故而BD⊥PO,又O为BD的中点,得出OP为BD的中垂线,得出结论;(2)设PD的中点为Q,连接AQ,EQ,证明四边形AQEF是平行四边形,于是AQ⊥平面PCD,通过证明CD⊥平面PAD得出CD⊥PA,结合PA⊥BD得出PA⊥平面ABCD,以A为原点建立空间直角坐标系,则直线PB与平面PCD所成角的正弦值等于|cos< >|,从而得出线面角的大小.
【考点精析】认真审题,首先需要了解空间角的异面直线所成的角(已知为两异面直线,A,C与B,D分别是上的任意两点,所成的角为,则).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知 Sn是数列{an}的前n项和,且Sn=2an+n﹣4.
(1)求a1的值;
(2)若bn=an﹣1,试证明数列{bn}为等比数列;
(3)求数列{an}的通项公式,并证明: + +…+ <1.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= sinxcosx﹣sin2x+
(1)求f(x)的最小正周期值;
(2)求f(x)的单调递增区间;
(3)求f(x)在[0, ]上的最值及取最值时x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】把函数f(x)=sin(2x+φ)(|φ|< )的图象上的所有点向左平移 个单位长度,得到函数y=g(x)的图象,且g(﹣x)=g(x),则(
A.y=g(x)在(0, )单调递增,其图象关于直线x= 对称
B.y=g(x)在(0, )单调递增,其图象关于直线x= 对称
C.y=g(x)在(0, )单调递减,其图象关于直线x= 对称
D.y=g(x)在(0, )单调递减,其图象关于直线x= 对称

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知长方体AC1中,AD=AB=2,AA1=1,E为D1C1的中点,如图所示.
(Ⅰ)在所给图中画出平面ABD1与平面B1EC的交线(不必说明理由);
(Ⅱ)证明:BD1∥平面B1EC;
(Ⅲ)求平面ABD1与平面B1EC所成锐二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知在四棱锥P﹣ABCD中,底面ABCD是平行四边形,PA⊥平面ABCD,PA= ,AB=1.AD=2.∠BAD=120°,E,F,G,H分别是BC,PB,PC,AD的中点.
(Ⅰ)求证:PH∥平面GED;
(Ⅱ)过点F作平面α,使ED∥平面α,当平面α⊥平面EDG时,设PA与平面α交于点Q,求PQ的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=|2x﹣1|,定义f1(x)=x,fn+1(x)=f(fn(x)),已知函数g(x)=fm(x)﹣x有8个零点,则m的值为(
A.8
B.4
C.3
D.2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】,已知定义在R上的函数在区间内有一个零点 的导函数.

(Ⅰ)求的单调区间;

(Ⅱ)设,函数,求证:

(Ⅲ)求证:存在大于0的常数,使得对于任意的正整数,且 满足.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2+(1﹣k)x﹣k恰有一个零点在区间(2,3)内,则实数k的取值范围是

查看答案和解析>>

同步练习册答案