精英家教网 > 高中数学 > 题目详情
14.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1、F2,离心率e=$\frac{\sqrt{2}}{2}$,且过点$({1,\frac{{\sqrt{2}}}{2}})$,
(1)求椭圆的标准方程;
(2)直线l:y=k(x+1)与该椭圆交于M、N两点,且|$\overrightarrow{{F}_{2}M}$+$\overrightarrow{{F}_{2}N}$|=$\frac{2\sqrt{26}}{3}$,求直线l的方程.

分析 (1)由椭圆的斜率公式,将点代入椭圆方程,即可求得a和b的方程,即可求得椭圆方程;
(2)将直线方程代入椭圆方程,利用韦达定理,向量数量积的坐标,利用向量的模长公式即可求得k的值,求得椭圆方程.

解答 解:(1)由椭圆的离心率e=$\frac{c}{a}$=$\sqrt{1-\frac{{b}^{2}}{{a}^{2}}}$=$\frac{\sqrt{2}}{2}$,则a2=2b2
将$({1,\frac{{\sqrt{2}}}{2}})$代入椭圆方程:$\frac{{x}^{2}}{2{b}^{2}}+\frac{{y}^{2}}{{a}^{2}}=1$,解得:a2=2,b2=1,
∴求椭圆的方程为$\frac{{x}^{2}}{2}+{y}^{2}=1$;   …(4分)
(2)设M(x1,y1)、N(x2,y2),
联立$\left\{\begin{array}{l}{y=k(x+1)}\\{\frac{{x}^{2}}{2}+{y}^{2}=1}\end{array}\right.$,消元得(1+2k2)x2+4k2x+2k2-2=0,
∴x1+x2=-$\frac{4{k}^{2}}{1+2{k}^{2}}$,x1x2=$\frac{2{k}^{2}-2}{1+2k}$,
∴y1y2=k(x1+x1+2)=$\frac{2k}{1+2{k}^{2}}$,
又∵$\overrightarrow{{F}_{2}M}$=(x1-1,y1),$\overrightarrow{{F}_{2}N}$=(x2-1,y2),则$\overrightarrow{{F}_{2}M}$+$\overrightarrow{{F}_{2}N}$=(x1+x2-2,y1+y2),
∴|$\overrightarrow{{F}_{2}M}$+$\overrightarrow{{F}_{2}N}$|=$\sqrt{({x}_{1}+{x}_{2}-2)^{2}+({y}_{1}+{y}_{2})^{2}}$=$\sqrt{(\frac{8{k}^{2}+2}{1+2{k}^{2}})^{2}+(\frac{2k}{1+2{k}^{2}})^{2}}$=$\frac{2\sqrt{26}}{3}$,
化简得40k4-23k2-17=0,
解得k2=1或k2=-$\frac{17}{40}$(舍去),则k=±1,
∴所求直线l的方程为y=x+1,y=-x-1.     …(12分)

点评 本题考查椭圆的标准方程及简单几何性质,考查直线与椭圆的位置关系,考查韦达定理,弦长公式,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.过点A(3,4)且与点B(-3,2)的距离最短的直线方程为(  )
A.3x-y-5=0B.x-3y+9=0C.3x+y-13=0D.x+3y-15=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知底面为正方形的四棱锥P-ABCD,如图(1)所示,PC⊥面ABCD,其中图(2)为该四棱锥的正(主)视图和侧(左)视图,它们是腰长为4cm的全等的等腰直角三角形.
(1)根据图(2)所给的正视图、侧视图,画出相应的俯视图,并求出该俯视图的面积;
(2)求四棱锥P-ABCD的侧面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.类比实数的运算性质猜想复数的运算性质:
①“mn=nm”类比得到“z1z2=z2z1”;
②“|m•n|=|m|•|n|”类比得到“|z1•z2|=|z1|•|z2|”;
③“|x|=1⇒x=±1”类比得到“|z|=1⇒z=±1”
④“|x|2=x2”类比得到“|z|2=z2
以上的式子中,类比得到的结论正确的个数是(  )
A.1B.2C.3D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.读程序:

则运行程序后输出结果判断正确的是(  )
A.$S=\frac{100}{101},P=\frac{100}{101}$B.$S=\frac{99}{100},P=\frac{99}{202}$
C.$S=\frac{100}{101},P=\frac{99}{202}$D.$S=\frac{100}{101},P=\frac{99}{100}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.观察:$\sqrt{6}$+$\sqrt{15}$<2$\sqrt{11}$,$\sqrt{5.5}$+$\sqrt{15.5}$<2$\sqrt{11}$,$\sqrt{4-\sqrt{2}}$+$\sqrt{17+\sqrt{2}}$<2$\sqrt{11}$,…,对于任意的正实数a,b,使$\sqrt{a}$+$\sqrt{b}$<2$\sqrt{11}$成立的一个条件可以是(  )
A.a+b=22B.a+b=21C.ab=20D.ab=21

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.如图,已知正方体ABCD-A'B'C'D'的外接球的体积为$\frac{{\sqrt{3}}}{2}π$,将正方体割去部分后,剩余几何体的三视图如图所示,则剩余几何体的表面积为(  )
A.$\frac{9}{2}+\frac{{\sqrt{3}}}{2}$B.$3+\sqrt{3}$或$\frac{9}{2}+\frac{{\sqrt{3}}}{2}$C.$2+\sqrt{3}$D.$\frac{9}{2}+\frac{{\sqrt{3}}}{2}$或$2+\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知空间三点A(-1,2,1),B(1,2,1),C(-1,6,4)
(1)求以向量$\overrightarrow{AB},\overrightarrow{AC}$为一组邻边的平行四边形的面积S;
(2)若向量$\overrightarrow{a}$分别与向量$\overrightarrow{AB}$,$\overrightarrow{AC}$垂直,且|$\overrightarrow{a}$|=10,求向量$\overrightarrow{a}$的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设α,β是两个不同的平面,l是直线且l?α,则“α∥β”是“l∥β”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案