精英家教网 > 高中数学 > 题目详情

数列{an}满足a1=1,a2=2,an+1•an=nλ(λ为常数,n∈N*),则a4等于


  1. A.
    1
  2. B.
    2
  3. C.
    3
  4. D.
    4
C
分析:根据题中已知条件先求出λ的值,然后根据an+1•an=2n求出a3的值,即可求得a4的值.
解答:由题意可知;a1=1,a2=2,an+1•an=nλ,
则:a2•a1=2×1=λ,∴an+1•an=2n,
故a3•a2=2×2=4,解得a3=2,a4•a3=2×3=6,
解得a4=3,
故选C.
点评:本题主要考查了由递推公式推导数列的通项公式,是高考的热点,考查了学生的计算能力和对数列的综合掌握,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设b>0,数列{an}满足a1=b,an=
nban-1an-1+n-1
(n≥2)
(1)求数列{an}的通项公式;
(4)证明:对于一切正整数n,2an≤bn+1+1.

查看答案和解析>>

科目:高中数学 来源: 题型:

若数列{an}满足a1=1,a2=2,an=
an-1an-2
(n≥3)
,则a17等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>0,数列{an}满足a1=a,an+1=a+
1
an
,n=1,2,….

(I)已知数列{an}极限存在且大于零,求A=
lim
n→∞
an
(将A用a表示);
(II)设bn=an-A,n=1,2,…,证明:bn+1=-
bn
A(bn+A)

(III)若|bn|≤
1
2n
对n=1,2,…
都成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}满足a1=1,an=
12
an-1+1(n≥2)

(1)若bn=an-2,求证{bn}为等比数列;    
(2)求{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}满足a1=
4
3
,an+1=an2-an+1(n∈N*),则m=
1
a1
+
1
a2
+…+
1
a2013
的整数部分是(  )

查看答案和解析>>

同步练习册答案