分析 根据$\overrightarrow{AP}=x\overrightarrow{AB}+y\overrightarrow{AD}$,得出${\overrightarrow{AP}}^{2}$=1,利用基本不等式得出3x+2y的最大值.
解答 解:∵$\overrightarrow{AP}=x\overrightarrow{AB}+y\overrightarrow{AD}$,
∴${\overrightarrow{AP}}^{2}$=${(x\overrightarrow{AB}+y\overrightarrow{AD})}^{2}$=9x2+4y2+2xy×3×2×(-$\frac{1}{2}$)
=(3x+2y)2-3•3x•2y≥(3x+2y)2-$\frac{3}{4}$×(3x+2y)2
=$\frac{1}{4}$×(3x+2y)2;
又${|\overrightarrow{AP}|}^{2}$=1,
即$\frac{1}{4}$×(3x+2y)2≤1,
所以3x+2y≤2,当且仅当3x=2y,
即x=$\frac{1}{3}$,y=$\frac{1}{2}$时,
3x+2y取得最大值2.
故答案为:2.
点评 本题考查了平面向量的数量积与模长的应用问题,也考查了基本不等式的应用问题,是基础题目.
科目:高中数学 来源: 题型:选择题
A. | $\frac{2}{3}$ | B. | $\frac{4}{3}$ | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $y=sin({2x+\frac{5π}{6}})$ | B. | y=-cos2x | C. | y=cos2x | D. | $y=sin({2x-\frac{π}{6}})$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{2\sqrt{3}}{3}$ | B. | $\frac{2\sqrt{5}}{5}$ | C. | 2 | D. | $\frac{2\sqrt{15}}{15}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com