精英家教网 > 高中数学 > 题目详情
离心率为的椭圆C1的长轴两端点分别是双曲线C2的两焦点.
(1)求椭圆C1的方程;
(2)直线y=x+m与椭圆C1交于A,B两点,与双曲线C2两条渐近线交于P,Q两点,且P,Q在A,B之间,使|AP|,|PQ|,|QB|成等差数列,求m的值.
【答案】分析:(1)椭圆C1的方程为(a>b>0),根据题意列方程组,解出即可;
(2)由|AP|,|PQ|,|QB|成等差数列,可得|AP|+|QB|=2|PQ|,则|AB|=|AP|+|PQ|+|QB|=3|PQ|,利用弦长公式表示出|AB|,根据两点间距离公式表示出|PQ|,解此关于m方程即可.
解答:解:(1)设椭圆C1的方程为(a>b>0),
由题意知a2=1+4=5,所以a=
,所以,解得c=,则b2=a2-c2=5-=
故椭圆C1的方程为
(2)由,得3x2+4mx+2m2-5=0,
设A(x1,y1),B(x2,y2),则x1+x2=-,x1x2=
所以|AB|====
双曲线的渐近线方程为:y=2x,y=-2x,
解得,由解得
所以两交点P,Q的坐标为(m,2m),(-),
|PQ|==
因为|AP|,|PQ|,|QB|成等差数列,所以|AP|+|QB|=2|PQ|,所以|AB|=|AP|+|PQ|+|QB|=3|PQ|,
=3,解得m=±
故m的值为±
点评:本题考查椭圆的标准方程的求解及直线与圆锥曲线的位置关系问题,考查数形结合思想,考查学生分析问题解决问题的能力,直线与圆锥曲线的位置关系问题是解析几何中重要题型,弦长公式、两点间距离公式、韦达定理、判别式等解决该类问题的基础知识,须熟练掌握.
练习册系列答案
相关习题

科目:高中数学 来源:2010-2011学年广东省韶关市北江中学高二(上)期末数学试卷(文科)(解析版) 题型:解答题

已知离心率为的椭圆C1的顶点A1,A2恰好是双曲线的左右焦点,点P是椭圆上不同于A1,A2的任意一点,设直线PA1,PA2的斜率分别为k1,k2
(Ⅰ)求椭圆C1的标准方程;
(Ⅱ)试判断k1•k2的值是否与点P的位置有关,并证明你的结论;
(Ⅲ)当时,圆C2:x2+y2-2mx=0被直线PA2截得弦长为,求实数m的值.
设计意图:考察直线上两点的斜率公式、直线与圆相交、垂径定理、双曲线与椭圆的几何性质等知识,考察学生用待定系数法求椭圆方程等解析几何的基本思想与运算能力、探究能力和推理能力.第(Ⅱ)改编自人教社选修2-1教材P39例3.

查看答案和解析>>

科目:高中数学 来源:2013年中国人民大学附中高三5月模拟数学试卷(文科)(解析版) 题型:填空题

已知离心率为的椭圆C1的左、右焦点分别为F1,F2,抛物线C2:y2=4mx(m>0)的焦点为F2,设椭圆C1与抛物线C2的一个交点为P(x',y'),,则椭圆C1的标准方程为    ;抛物线C2的标准方程为   

查看答案和解析>>

科目:高中数学 来源:2011年广东省韶关市高考数学一模试卷(文科)(解析版) 题型:解答题

已知离心率为的椭圆C1的顶点A1,A2恰好是双曲线的左右焦点,点P是椭圆上不同于A1,A2的任意一点,设直线PA1,PA2的斜率分别为k1,k2
(Ⅰ)求椭圆C1的标准方程;
(Ⅱ)试判断k1•k2的值是否与点P的位置有关,并证明你的结论;
(Ⅲ)当时,圆C2:x2+y2-2mx=0被直线PA2截得弦长为,求实数m的值.
设计意图:考察直线上两点的斜率公式、直线与圆相交、垂径定理、双曲线与椭圆的几何性质等知识,考察学生用待定系数法求椭圆方程等解析几何的基本思想与运算能力、探究能力和推理能力.第(Ⅱ)改编自人教社选修2-1教材P39例3.

查看答案和解析>>

科目:高中数学 来源:广东省模拟题 题型:解答题

已知离心率为的椭圆C1的顶点,A1、A2恰好是双曲线的左右焦点,点P是椭圆上不同于A1、A2的任意一点,设直线PA1,PA2的斜率分别为k1,k2
(Ⅰ)求椭圆C1的标准方程;
(Ⅱ)试判断k1·k2的值是否与点P的位置有关,并证明你的结论;
(Ⅲ)当k1=时,圆C2:x2+y2-2mx=0被直线PA2截得弦长为,求实数m的值。

查看答案和解析>>

同步练习册答案