精英家教网 > 高中数学 > 题目详情
4.若x=-2是关于x的一元二次方程x2-$\frac{5}{2}$ax+a2=0的一个根,则a的值为(  )
A.1或4B.-1或-4C.-1或4D.1或-4

分析 直接将x=-2代入方程x2-$\frac{5}{2}$ax+a2=0中得到关于a的方程,解出即可.

解答 解:将x=-2代入方程x2-$\frac{5}{2}$ax+a2=0中
得:a2+5a+4=0,解得:a=-4或-1,
故选:B.

点评 本题考查了一元二次方程根的问题,解方程问题,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=a(x+$\frac{1}{x}$)-|x-$\frac{1}{x}$|(x>0)a∈R.
(1)若a=$\frac{1}{2}$,求y=f(x)的单调区间;
(2)若关于x的方程f(x)=t有四个不同的解x1,x2,x3,x4,求实数a,t应满足的条件;
(3)在(2)条件下,若x1,x2,x3,x4成等比数列,求t用a表示.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.一个容量为100的样本,其数据的分组与各组的参数如下:(0,10〕,12;(10,20〕,13;(20,30〕,15;(30,40〕,24;(40,50〕,16;(50,60〕,13;(60,70〕,7;则这样本数据落在(10,40〕上的频率为(  )
A.0.13B.0.39C.0.52D.0.64

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.圆:x2+y2+cx+c2-c=0过原点的充要条件是c=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=loga(x-1),g(x)=loga(3-x)(a>0且a≠1).
(1)求函数G(x)=f(x)-g(x)的定义域;
(2)探讨H(x)=f(x-1)+g(x+1)的奇偶性;
(3)利用对数函数的单调性,讨论不等式f(x)≥g(x)中x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知关于x的方程4x2-2(m+1)x+m=0的两个根恰好是一个直角三角形的两个锐角的余弦值,实数m的值(  )
A.$\sqrt{2}$B.-$\sqrt{2}$C.$\sqrt{3}$D.$-\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.函数f(x)=Asin(ωx+φ)(A>0,ω>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$)的部分图象如图所示,则f(1)+f(2)+…+f(2015)的值为(  )
A.-1B.$\frac{7\sqrt{2}}{2}$C.671D.2015

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.向边长分别为5,5,6的三角形区域内随机投一点M,则该点M与三角形三个顶点距离都大于1的概率为(  )
A.$\frac{π}{12}$B.$\frac{π}{24}$C.1-$\frac{π}{12}$D.1-$\frac{π}{24}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若sin$\frac{α}{2}$=$\frac{1}{3}$,则cos(π+α)等于(  )
A.-$\frac{7}{9}$B.$\frac{7}{9}$C.-$\frac{5}{9}$D.$\frac{5}{9}$

查看答案和解析>>

同步练习册答案