精英家教网 > 高中数学 > 题目详情

【题目】过抛物线E:x2=2py(p>0)的焦点F作斜率率分别为k1 , k2的两条不同直线l1 , l2 , 且k1+k2=2.l1与E交于点A,B,l2与E交于C,D,以AB,CD为直径的圆M,圆N(M,N为圆心)的公共弦所在直线记为l.
(1)若k1>0,k2>0,证明:
(2)若点M到直线l的距离的最小值为 ,求抛物线E的方程.

【答案】
(1)解:由题意,抛物线E的焦点为 ,直线l1的方程为

,得

设A,B两点的坐标分别为(x1,y1),(x2,y2),则x1,x2是上述方程的两个实数根.

从而x1+x2=2pk1

所以点M的坐标为

同理可得点N的坐标为

于是

由题设k1+k2=2,k1>0,k2>0,k1≠k2,所以0<


(2)解:由抛物线的定义得

所以 ,从而圆M的半径

故圆M的方程为

化简得

同理可得圆N的方程为

于是圆M,圆N的公共弦所在的直线l的方程为

又k2﹣k1≠0,k1+k2=2,则l的方程为x+2y=0.

因为p>0,所以点M到直线l的距离为

=

故当 时,d取最小值 .由题设 ,解得p=8.

故所求抛物线E的方程为x2=16y.


【解析】(1)由抛物线方程求出抛物线的焦点坐标,写出两条直线的方程,由两条直线方程和抛物线方程联立求出圆M和圆N的圆心M和N的坐标,求出向量 的坐标,求出数量积后转化为关于k1和k2的表达式,利用基本不等式放缩后可证得结论;(2)利用抛物线的定义求出圆M和圆N的直径,结合(1)中求出的圆M和圆N的圆心的坐标,写出两圆的方程,作差后得到两圆的公共弦所在直线方程,由点到直线的距离公式求出点M到直线l的距离,利用k1+k2=2转化为含有一个未知量的代数式,配方后求出最小值,由最小值等于 求出p的值,则抛物线E的方程可求.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某电脑公司有6名产品推销员,其工作年限与推销金额数据如下表:

推销员编号

1

2

3

4

5

工作年限/年

3

5

6

7

9

推销金额/万元

2

3

3

4

5

(1)求年推销金额关于工作年限的线性回归方程;

(2)若第6名推销员的工作年限为11年,试估计他的年推销金额.

附:线性回归方程中,,其中为样本平均值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 ,其中.函数的图象过点,点与其相邻的最高点的距离为4

(Ⅰ)求函数的单调递减区间;

(Ⅱ)计算的值;

(Ⅲ)设函数,试讨论函数在区间 [03] 上的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,函数.

1)若上单调递增,求正数的最大值;

2)若函数内恰有一个零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中央电视台播出的《朗读者》节目,受到广大人民群众的喜爱.随着节目的播出,极大激发了观众对朗读以及经典的阅读学习积累的热情,从中获准匪浅,现从观看节目的观众中随机统计了4位观众的周均阅读学习经典的知识的时间(单位:小时)与年龄(单位:岁),并制作了对照表(如下表所示):

年龄

20

30

40

50

周均学习成语知识时间(小时)

2.5

3

4

4.5

由表中数据,试求线性回归方程,并预测年龄为50岁观众周均学习阅读经典知识的时间.

参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,将一个各面都涂了油漆的正方体,切割为125个同样大小的小正方体,经过搅拌后,从中随机取一个小正方体,记它的涂漆面数为X,则X的均值E(X)=( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,抛物线的焦点为,点是抛物线上一点,且

(1)求的值;

(2)若为抛物线上异于的两点,且.记点到直线的距离分别为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数),的部分图象如图所示,且,则( )

A. 6 B. 4 C. -4 D. -6

查看答案和解析>>

同步练习册答案